图表征学习——Graph Embedding

本文详细介绍了图表征学习中的关键方法,如DeepWalk、Node2Vec处理邻域结构,LINE和SDNE关注一阶和二阶接近度,以及M-NMF捕捉微观结构和群落结构。这些技术都致力于在低维嵌入中保留图的结构信息。
摘要由CSDN通过智能技术生成

  图表征学习的目的是将图中的节点嵌入低维的表征,并有效地保留图的结构信息。

在这里插入图片描述

  Graph Embedding是实现图表征学习的方法,即Graph Embedding的目的也是将图结构转换为节点的低维嵌入表示,在这个过程中,保留图的拓扑结构信息尤为重要。

  图的结构可以分为不同的类别,不同类别拥有不同粒度的图表征,经常用到的图结构有邻域结构、高阶接近度和群落结构。

邻域结构

  基于短时随机行走中出现的节点分布与自然语言中单词分布相似的发现,DeepWalk采用了随机行走来捕捉邻域结构,然后对于随机行走产生的每个行走序列,按照Skip-Gram模型,最大化行走序列中邻居节点出现的概率。Node2Vec定义了一个灵活的节点图邻域概念,并设计了一种二阶随机行走策略来对邻域节点进行抽样,从而在广度优先抽样和深度优先抽样之间平稳插值。

高阶接近度

  LINE被提出用于大规模的网络嵌入,LINE可以保留一阶接近度和二阶接近度。一阶接近度指的是观察到的两个节点之间成对节点的接近度。二阶接近度是由两个节点的“环境”(邻居节点)的相似性确定的。在衡量两个节点之间的关系方面,它们都很重要。从本质上说,由于LINE是基于浅层模型的,因此其表现能力有限。SDNE是一个用于网络嵌入的深度模型,其目的也是捕捉一阶接近度和二阶接近度。SDNE使用具有多个非线性层的深度自编码器架构来保留二阶接近度。为了保留一阶接近度,SDNE采用了拉普拉斯特征映射的思想。

群落结构

  M-NMF是一个用于图表征学习的模块化非负矩阵因子化模型,旨在同时保留微观结构(即节点的一阶接近度和二阶接近度)以及中观群落结构。它们首先采用NMF模型来保留微观结构,同时通过模块化来最大化检测群落结构。然后,他们引入了一个辅助的群落表征矩阵来连接节点的表征和群落结构。通过这种方式,学习到的节点表征将同时受到微观结构和群落结构的制约。

  • 12
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晓shuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值