LLM大模型推理框架终极抉择:Ollama与vLLM该怎么选?

前言

近年来,随着大语言模型(Large Language Model)应用的火热,越来越多的企业和个人开发者都希望能够在本地或服务器上方便地部署自己的大模型推理服务。无论是进行自然语言处理(NLP)任务,还是用来提供对话机器人服务,或是构建智能客服与搜索引擎,都离不开一个高效、易用、可扩展的大模型推理框架。

在众多的大模型推理框架中,Ollama和vLLM在国内外社区逐渐获得了不少关注。对于想要进行大模型服务自建或项目落地的朋友来说,“Ollama和vLLM到底该选谁?”也变成了一个颇具代表性的问题。本文将从框架简介、功能特性、性能表现、生态兼容性以及实际应用场景等方面进行对比,希望能为大家的选择提供参考。


Ollama:一个主打“本地化”体验的大模型推理框架

1. 背景与特点

  • 社区背景:Ollama 在国外社区有一定的影响力,也有开源的项目支持,方便大家对其进行二次开发或自定义优化。
  • 使用目标:Ollama 主要目标是降低个人本地部署大模型的门槛,让用户可以快速在自己的本地环境(尤其是Mac电脑)上运行类似ChatGPT风格的推理任务,而不依赖远程云端 GPU。
  • 操作系统友好:Ollama 在macOS上的使用体验尤其流畅,得益于 Apple 芯片(M系列)的硬件特性,可以较好地支持本地推理(当然也支持 Intel 架构,但性能上会略有差距)。

2. 优势

  • 安装与部署简单:对于Mac用户而言,安装和使用门槛相对较低,无需太多配置就能直接跑模型。
  • 开箱即用:官方提供了对常用大模型的直接支持(如Llama、GPT模型等),能快速完成搭建。
  • 灵活度高:用户可以对模型做一些简单的量化或剪枝,适合在个人电脑上进行Demo或简单项目开发。

3. 不足

  • 生态相对较小:与一些在大规模服务器环境中使用的推理框架相比,Ollama 主要聚焦在本地推理场景,社区生态可能没有那么庞大。
  • 大规模模型推理局限:如果你想要在分布式环境下快速跑极大规模模型,或是充分利用多机多卡,那么Ollama还没有提供完善的多节点并行推理方案。

vLLM:面向高吞吐量、低延迟的推理利器

1. 背景与特点

  • 开源社区氛围:vLLM 出自于大模型推理优化的研究团队,针对推理加速有大量深入的实现与优化。
  • 高并发与低延迟:vLLM 设计的初衷是让大模型推理可以在服务化场景下以更低的延迟和更高的吞吐量运行,适合对大模型推理有高并发需求的企业应用。
  • 分布式扩展能力:vLLM 在多节点分布式部署、GPU 并行使用方面支持完善,让你能在部署大型语言模型(上百亿、上千亿参数)时依旧保持较高的推理速度。

2. 优势

  • 推理性能高:vLLM 对推理过程做了多方面的优化,包括异步调度、张量切分、高效的缓存策略等,对GPU利用率做到了较优设计。
  • 服务器端推理可扩展性强:对于需要大规模部署的企业而言,vLLM 能更好地整合多机多卡,稳定性和扩展性优异。
  • 与主流大模型兼容性好:vLLM 提供了对常见大模型(如 GPT、Llama 2、Falcon 等)的适配,支持多种权重格式。

3. 不足

  • 学习曲线相对较陡:相比Ollama的“开箱即用”,vLLM 在安装、配置和使用上需要一定的运维与开发经验。
  • 本地化体验不足:vLLM 更偏向服务端场景,若只想在个人笔记本或Mac上跑一个轻量级模型体验,可能并不如 Ollama 那么方便。

Ollama vs. vLLM:核心对比与应用建议

  1. 应用场景
    • Ollama 更适合个人研发者、本地开发者,在 Mac 上“随手跑模型”的需求,主要针对中小型模型或个人Demo场景。
    • vLLM 则更适合需要高性能推理的企业级场景,或者对延迟与并发要求高的生产级项目。
  2. 性能与扩展性
    • Ollama 主要在单机环境下工作,如果只想在个人电脑上进行少量并发推理,Ollama 体验会更轻松。
    • vLLM 在多机多卡扩展、GPU深度利用方面有明显优势,对于那些需要处理大量请求或大批量推理任务的应用来说,vLLM是更好的选择。
  3. 易用性
    • Ollama 相对简单易用,不用太多的配置,直接brew install ollama(在macOS上)就能上手。
    • vLLM 功能更全面,性能更强大,但部署环境与参数配置相对复杂,需要更多的运维经验和对GPU资源的管理能力。
  4. 生态与开发者社区
    • Ollama 社区更偏向个人开发者分享,插件与工具都围绕“快速跑模型”这个理念。
    • vLLM 社区围绕高性能与可扩展性做了很多深入的优化讨论,官方团队和社区也在不断迭代核心推理引擎。
  5. 未来发展
    • Ollama 如若能进一步改善对多卡以及多节点的并行支持,或是将更多的GPU/CPU优化能力整合进来,未来也可在一些中型项目中得到更广泛的应用。
    • vLLM 随着大模型在各行各业落地的需求提升,凭借其高吞吐、低延迟的定位,会继续在企业级和科研级场景受到关注。

(鉴于很多朋友无法下载ollama,这里给大家整理好了ollama的安装包,扫描领取即可↓↓↓↓


如何选择?

如果你是个人开发者,主要想在本地跑一些模型做 Demo 演示,或者想快速体验某个模型的效果,那么 Ollama 可能会给你带来更好的“上手即用”体验;尤其是在 Mac 上,只需轻量安装即可开始对话,硬件配置要求相对没那么高。

如果你是企业用户或科研人员,需要处理大量用户请求或者对推理延迟、吞吐量有较高要求,那么 vLLM 的性能优势和扩展能力会让你受益匪浅,尤其是在多机多卡的情况下可以发挥其真正的实力。

总的来说,这两者并不完全对立,而是面对的场景不同:

  • Ollama:适合个人 + 本地部署 + 轻量体验
  • vLLM:适合企业级 + 服务器部署 + 高性能扩展

不妨先明确自己的目标需求,再结合预算和技术栈进行选型。对多数想要“试水大模型推理”的开发者而言,可以先从 Ollama 入手,快速搭建原型;随后,如果要落地生产或者项目规模扩大,需要更多高并发场景时,再迁移到或直接搭建 vLLM 的服务。


结语

“大模型推理框架的选择”并没有一个放之四海而皆准的标准答案,更多还是取决于项目背景、性能需求以及运维成本等综合因素。Ollama 以更贴近“本地极简”部署的理念胜出,而 vLLM 则在“高并发、高吞吐”场景中脱颖而出。希望本文所做的介绍,能给你在抉择时提供一些思路。

如果你觉得本文对你有帮助,可以留言告诉我们你对 Ollama 和 vLLM 的使用感受或问题。让我们一起探索更多更好用的大模型推理框架,让大模型的潜力被更多人挖掘与应用!

程序员为什么要学大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值