文章提出了一个名为WorkflowLLM的框架,旨在提高大语言模型(LLM)在工作流编排中的能力。为了提升LLM在这一任务中的表现,研究者构建了一个大规模的微调数据集——WorkflowBench,该数据集包含来自83个应用程序、1503个API的106,763个样本,涵盖了28个类别。
数据集的构建分为三个阶段:数据收集、查询扩展和工作流生成。在此基础上,作者使用WorkflowBench对Llama-3.1-8B模型进行了微调,得到了WorkflowLlama,表现出在工作流编排任务中优异的性能,超越了包括GPT-4o在内的多种基准模型。
此外,WorkflowLlama在面对未见过的API和任务时,展现了较强的泛化能力。该框架的优势在于,它不仅能够自动化处理复杂的工作流,还能在没有显式示例的情况下对新任务进行推理和编排。
一、Workflow LLM框架
数据收集:
-
·通过从Apple Shortcuts和RoutineHub收集真实世界的工作流数据,将其转化为Python风格的代码。每个工作流都包括相关API调用、功能描述等元数据。
-
·利用ChatGPT生成分层的思维过程,补充注释、任务计划和查询,以增强模型对任务的理解。
· 查询扩展:
- ·使用ChatGPT生成更多任务查询,以增加数据集的多样性和复杂度。这些查询基于从不同应用和API中抽样的功能生成,确保工作流能够覆盖更广泛的场景。
· 工作流生成:
-
·训练一个工作流注释模型,用于根据生成的查询自动生成工作流。通过规则过滤和质量确认,确保生成的工作流符合规范,避免逻辑错误和无关API调用。
-
·最终,将收集的高质量样本与合成数据合并,形成包含大量样本的WorkflowBench数据集。
· 模型微调:
- 基于WorkflowBench数据集,对Llama-3.1-8B进行微调,得到WorkflowLlama模型,使其能够自动生成和编排复杂的工作流。
二、结语
文章提出了WorkflowLLM框架,通过构建大规模数据集WorkflowBench并对智能体进行微调,显著提升了大语言模型在工作流编排中的能力。
论文题目: WorkflowLLM: Enhancing Workflow Orchestration Capability of Large Language Models
论文链接: https://arxiv.org/abs/2411.05451
三、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】