电路理论基础

这篇笔记直接探讨电路理论的普遍结论,包括基本概念如电的物理量、基尔霍夫定律和图论,以及稳态电路分析方法、双口网络、动态线性电路分析等。电路分析涉及线性电路特性如叠加定理、齐性定理,还涵盖了正弦稳态电路、谐振与互感、非线性电路分析等复杂话题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电路理论基础

[电路理论基础].梁贵书.扫描版(ED2000.COM).pdf

image-20201015210437748
书名 作者 出版社 阅读日期
电路理论基础 梁贵书、董华英 中国电力出版社 2020年10月8日

前提

理论类书籍通常都是由浅入深的讲解,从一个最简单的特例作为引子,再引申为更普遍的结论。这篇笔记里不对特例结论进行记载,直接记录普遍结论。

基本概念

电路理论有两个组成部分

  1. 电路分析:给定激励求响应
  2. 电路方法:实现响应搭电路

电的物理量

电流、电压、电荷、磁链、功率、能量

基尔霍夫定律

  1. KCL:节点电流代数和为零

  2. KVL:回路电压代数和为零

图论

  • 回路:每个节点连接2条支路
  • 树:连通,包含所有节点,不含回路
  • 割集:将图割成两个子图的一组最少支路

稳态电路分析方法

名称 简介 备注 优点 缺点
2b分析法 (n-1)个KCL+(b-n+1)个KVL+b个VAR=2b个方程 n:节点数 b:支路数 列方程简单,能求出所有节点、支路、元件的各个参数 有的时候只需要求解某一路或某几路的参数,计算过于繁琐
等效变换法 拥有相同VAR关系的等效网络间的变换 如电源模型等效变换 化简电路,方便求解 需要经验和灵感
支路分析法 (n-1)个KCL+(b-n+1)个KVL结合VAR=b个方程***或***(b-n+1)个KVL+(n-1)个KCL结合VAR=b个方程 将2b分析法中的b个VAR结合到了KCL或KVL中 方程数比2b少了一半
节点分析法 (n-1)个节点电压方程 G n u n = I n \boldsymbol G_n\boldsymbol u_n=\boldsymbol I_n Gnun=In 记忆 G i i G i j i s i i G_{ii}G_{ij}i_{sii} GiiGijisii的含义 便于计算机编程计算 需要一定的记忆量
网孔分析法 (b-n+1)个网孔电流方程 R n i n = U n \boldsymbol R_n\boldsymbol i_n=\boldsymbol U_n Rnin=Un 记忆 R i i R i j u s i i R_{ii}R_{ij}u_{sii} RiiRijusii的含义 和节点分析法对应 需要一定的记忆量
回路分析法 (b-n+1)个回路电流方程 网孔分析法的推广,记忆 R i i R i j u s i i R_{ii}R_{ij}u_{sii} RiiRijusii的含义 能用于非平面电路 寻找回路较为抽象
改进节点分析法 [ G n B C D ] [ u n i ] = [ I S U S ] \begin{bmatrix}\boldsymbol G_n&\boldsymbol B\\\boldsymbol C& \boldsymbol D\end{bmatrix}\begin{bmatrix}\boldsymbol u_n\\\boldsymbol i\end{bmatrix}=\begin{bmatrix}\boldsymbol I_S\\\boldsymbol U_S\end{bmatrix} [GnCBD][uni]=[ISUS]n+m-1个方程,m为附加电流变量数目 记忆 G n B C D I S U S \boldsymbol G_n\boldsymbol B\boldsymbol C\boldsymbol D\boldsymbol I_S\boldsymbol U_S GnBCDISUS的含义 适用于各种电路 记忆量大

常用等效变换

  1. 星形网络和三角网络变换 R i j = R i R j + R i R k + R j R k R k R_{ij}=\frac{R_iR_j+R_iR_k+R_jR_k}{R_k} Rij=RkRiRj+RiRk+RjRk R i = R i j R i k R i j + R i k + R j k R_i=\frac {R_{ij}R_{ik}}{R_{ij}+R_{ik}+R_{jk}} Ri=Rij+Rik+RjkRijRik

​ 2.电源位移

电路定理

  • 线性电路特性:

    1. 叠加:总响应等于各个激励单独作用时的响应之和。不作用的电压源短路,电流源开路。
    2. 齐性:激励和响应同时放大缩小相同倍数仍成立。
    3. 戴维南:二段网络等效为电压源串电阻。开路电压、等效电阻与端口u,i的关系式。
    4. 诺顿:二段网络等效为电流源并电阻。短路电流、等效电阻与端口u,i的关系式。
    5. 互易:仅含电阻的单一激励电路,激励和响应互换位置仍然成立。三种形式:电流源和短路电流,电压源和开路电压,电压源换短路电流、电流源换开路电压。
  • 也适用于非线性电路定理:

    1. 替代:支路上的无耦合元件可以用等于该支路电压/电流的电压源/电流源替代。
    2. 特勒根:第一定理本质是能量守恒,提供功率和等于消耗功率和,电路的支路电压和支路电流的乘积代数和为零。第二定理比较有意思。两个拓扑结构一样的电路,一个电路的支路电压(电流)和另一个电路对应支路的电流(电压)乘积代数和也为零。
    3. 对偶:对偶元素全部互换仍成立。

双口网络

双口网络常用类型

  • 开路电阻

    [ u 1 u 2 ] = [ R 11 R 12 R 21 R 22 ] [ i 1 i 2 ] \begin{bmatrix}u_1\\u_2\end{bmatrix}=\begin{bmatrix}R_{11}&R_{12}\\R_{21}&R_{22}\end{bmatrix}\begin{bmatrix}i_1\\i_2\end{bmatrix} [u1u2]=[R11R21R12R22][i1i2] R i i = u i i i ∣ i j = 0 R_{ii}=\frac {u_i}{i_i}|_{i_j=0} Rii=iiuiij=0 R i j = u i i j ∣ i i = 0 R_{ij}=\frac {u_i}{i_j}|_{i_i=0} Rij=ijuiii=0

  • 短路电导

    [ i 1 i 2 ] = [ G 11 G 12 G 21 G 22 ] [ u 1 u 2 ] \begin{bmatrix}i_1\\i_2\end{bmatrix}=\begin{bmatrix}G_{11}&G_{12}\\G_{21}&G_{22}\end{bmatrix}\begin{bmatrix}u_1\\u_2\end{bmatrix} [i1i2]=[G11G21G12G22][u1u2] G i i = i i u i ∣ u j = 0 G_{ii}=\frac {i_i}{u_i}|_{u_j=0} Gii=uiiiuj=0 G i j = i i u j ∣ u i = 0 G_{ij}=\frac {i_i}{u_j}|_{u_i=0} Gij=ujiiui=0

  • 传输
    [ u 1 i 1 ] = [ A B C D ] [ u 2 − i 2 ] = T [ u 2 − i 2 ] \begin{bmatrix}u_1\\i_1\end{bmatrix}=\begin{bmatrix}A&B\\C&D\end{bmatrix}\begin{bmatrix}u_2\\-i_2\end{bmatrix}=\boldsymbol T\begin{bmatrix}u_2\\-i_2\end{bmatrix} [u1i1]=[ACBD][u2i2]=T[u2i2]

    A = u 1 u 2 ∣ i 2 = 0 A=\frac {u_1}{u_2}|_{i_2=0} A=u2u1i2=0 B = u 1 − i 2 ∣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值