24、从传统餐饮到电子餐饮的战略转型研究

从传统餐饮到电子餐饮的战略转型研究

在当今数字化时代,电子餐饮服务正以前所未有的速度改变着人们的饮食方式。越来越多的消费者倾向于通过手机应用程序订购美食,这一趋势不仅改变了餐饮行业的格局,也为相关企业带来了新的机遇和挑战。本文将深入探讨消费者对电子餐饮应用的认知、期望以及影响他们购买决策的因素。

研究设计与方法
  • 抽样与数据收集 :研究聚焦于奥里萨邦的贾苏古达区。采用便利抽样法选择地区,概率抽样法选取受访者。通过发放标准化问卷收集数据,从376份问卷中筛选出350份有效问卷。
  • 可靠性测量 :使用Cronbach’s alpha系数衡量数据的内部一致性,本研究中该系数为0.69,接近0.7,表明数据具有较好的内部一致性。
  • 统计工具的选择 :运用Garret排名技术、探索性因子分析和回归分析对数据进行分析。
统计工具的应用
  • Henry Garret排名技术 :该方法用于根据受访者的意见对电子餐饮应用和影响购买决策的因素进行排名。具体步骤如下:
    1. 让受访者对各项因素进行排名。
    2. 使用公式“Percentage Score = 100(Rij – 0.5)/Nj”将排名转换为得分。
    3. 计算总Garrett得分并除以选择项数量得到平均Garrett得分。
    4. 根据平均得分进行排名。
  • </
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值