超声成像中的波束合成算法是决定图像质量的关键环节,其核心目标在于通过优化信号加权和聚焦策略,提高分辨率、信噪比和对比度。
不同发射模式
一、波束合成方法
1、传统延迟叠加(DAS)算法
1.1. 原理
- 发射聚焦:计算各阵元到焦点的声程差,并施加相应延时,使回波同相位叠加。
- 接收聚焦:动态调整接收延时,逐点合成扫描线
- 加权处理:采用变迹函数(如Hamming窗)抑制旁瓣,但会使主瓣宽度有所牺牲。
通过计算各接收通道的传播时间差(延迟),对回波信号进行时序校正后叠加,以实现动态聚焦。权重通常采用固定窗函数(如汉宁窗、变迹窗)来抑制旁瓣。
- 优点:计算简便、实时性强。
- 缺点:旁瓣抑制与分辨率的权衡较为困难,且对介质声速假设较为敏感。
1.2. 改进方向
- 变迹窗函数:通过调整窗函数形状(如线性扫描聚焦)来优化旁瓣抑制。
- 快速矩阵预存法:预存DAS矩阵,在成像时直接进行矩阵乘法以加速计算。
2、自适应波束合成算法
2.1. 最小方差(MV/Capon)算法
- 原理:基于接收信号协方差矩阵,计算使输出功率最小的自适应权重,以抑制噪声和干扰。该算法适用于窄带信号,若处理宽带超声则需结合子带分解。
- 改进:
- 空间平滑技术:通过子孔径平均消除信号相关性(如前后向平滑法)。
- 稳健性增强:采用对角加载、时间/空间平均等方法提高算法的鲁棒性。
2.2. 广义旁瓣相消(GSC)算法
- 原理:将加权向量分解为自适应与非自适应部分,投影到信号子空间以抑制旁瓣,并结合符号相干系数(SCF)进一步优化。
3、编码发射与混合算法
3.1. Chirp编码 + 自适应加权
- 原理:发射调频编码信号(Chirp),通过脉冲压缩提高信噪比,结合自适应加权优化聚焦。
- 优势:能够兼顾横向分辨率与对比度的提升。
3.2. 合成发射孔径(SFA)
- 原理:分次发射部分阵元,合成等效大孔径,实现发射和接收双聚焦,在加速成像的同时保持分辨率。
4、新型算法与优化策略
4.1. 方向置信度滤波
- 原理:通过多方向滤波器组提取目标响应特征,计算方向置信度并进行加权叠加,以抑制杂波。
4.2. 快速波束合成技术
- 原理:预存DAS矩阵集合,成像时直接进行矩阵运算,降低实时计算复杂度,以支持4D超声等高帧率应用。
4.3. 虚拟阵元双聚焦(DFB)
- 原理:首次固定焦点聚焦后,利用虚拟阵元计算二次聚焦参数,以提高深部组织分辨率。
4.4. 混合技术
- 平面波+合成孔径:结合多角度发射与合成孔径技术,提升横向分辨率。
二、波束合成算法对比与选择
算法类型 | 分辨率 | 对比度 | 计算复杂度 | 适用场景 |
---|---|---|---|---|
DAS | 中 | 低 | 低 | 常规成像、对实时性要求高的场景 |
MV + Capon | 高 | 中 | 高 | 需要高分辨率的精细成像场景 |
Chirp_Capon | 高 | 高 | 极高 | 血流成像、对高对比度有需求的场景 |
SFA + 自适应加权 | 中高 | 中高 | 中 | 实时三维/弹性成像场景 |
快速矩阵预存法 | 中 | 中 | 低 | 4D超声、高帧率实时成像场景 |
三、不同发射模式的成像原理
-
平面波成像
- 原理:所有阵元同时发射相同的未延时脉冲,形成覆盖整个成像区域的平面波前,通过一次发射即可接收全部回波数据。
- 特点:
- 高帧频:单次发射即可完成成像,帧率可达数千Hz。
- 分辨率限制:因未聚焦,横向分辨率较低,需通过复合多角度平面波叠加(如CPWI)来提升对比度。
- 应用场景:适用于实时三维成像、血流动力学监测等对速度要求较高的场景。
-
弱聚焦成像
- 原理:在发射阶段采用较宽声束(如浅焦点或小孔径),仅将部分能量聚焦于特定深度,接收时动态调整焦点。
- 特点:
- 折中性能:牺牲部分分辨率以换取较高的成像速度,适合用于动态组织观测。
- 动态孔径:根据探测深度调整有效孔径大小,近场采用小孔径以减少旁瓣,远场采用大孔径以增强聚焦。
-
发散波成像
- 原理:阵元按照特定延时序列发射,形成扩散波束(如凸阵探头),可覆盖更广泛的区域。
- 特点:
- 宽覆盖:适合大范围扫描(如腹部成像),但边缘分辨率会下降。
- 几何校正:需通过延时补偿来修正回波路径差异,如对凸阵的曲率半径进行补偿。
-
技术对比与性能权衡
参数 | 平面波 | 弱聚焦 | 发散波 |
---|---|---|---|
帧频 | 最高(千Hz级) | 较高 | 中等 |
分辨率 | 低(需复合) | 中等 | 边缘较低 |
适用场景 | 高速动态成像 | 平衡速度与质量 | 大范围扫描 |
四、挑战与趋势
- 计算复杂度:MV算法需进行矩阵求逆,硬件实现难度较大,多通过GPU加速或FPGA进行优化。
- 深度学习融合:利用神经网络优化波束权重和图像后处理,已成为研究热点。
如需具体仿真或参数设计细节,可进一步查阅相关文献。
总结
波束合成算法的选择需要综合考量成像需求(分辨率、帧率、信噪比)以及硬件限制。传统DAS算法目前仍是主流,而自适应算法(如MV、GSC)和混合编码技术在高端应用中正逐步得到广泛应用。未来的发展趋势包括算法并行化(GPU加速)以及深度学习驱动的自适应权重优化。
二、波束合成原理及关键技术
波束合成的核心在于通过调整发射/接收信号的延时与权重,实现空间聚焦和信号增强。
-
基本原理
- 延时叠加(DAS):
- 发射聚焦:计算各阵元到焦点的声程差,并施加相应延时,使回波同相位叠加。
- 接收聚焦:动态调整接收延时,逐点合成扫描线,如公式 ( \tau_n = \frac{\sqrt{(x_n - x_p)^2 + z_p^2}}{c} )(其中 ( x_n )为阵元位置,( x_p, z_p )为像素点坐标)。
- 加权处理:采用变迹函数(如Hamming窗)抑制旁瓣,但会使主瓣宽度有所牺牲。
- 延时叠加(DAS):
-
优化方法
- 自适应波束合成:
- 最小方差(MV)算法:利用信号统计特性动态调整权重,以提升分辨率,但需解决宽带信号和相关性干扰问题。
- 子带分解与空间平滑:将宽带信号分解为子带进行处理,结合前后向平滑消除信号相关性,提升鲁棒性。
- 混合技术:
- 平面波+合成孔径:结合多角度发射与合成孔径技术,提升横向分辨率。
- 编码发射:使用Chirp信号等宽频编码,增强回波信噪比。
- 自适应波束合成: