CF1922F Replace on Segment 题解

题目传送门 洛谷题目传送门

思路

考虑区间 DP。

f i , j , k f_{i,j,k} fi,j,k 表示把区间 [ i , j ] [i,j] [i,j] 变成 k k k 的最小花费,很明显有转移 f i , j , k = min ⁡ l = i j − 1 ( f i , l , k + f l + 1 , j , k ) f_{i,j,k} = \displaystyle \min_{l=i}^{j-1}(f_{i,l,k}+f_{l+1,j,k}) fi,j,k=l=iminj1(fi,l,k+fl+1,j,k)

这就完了?一道紫题?怎么可能!

发现这样转移会算漏,因为可以把区间 [ i , j ] [i,j] [i,j] 变成不含 k k k 的,再花一步变成全部都是 k k k

考虑设 g i , j , k g_{i,j,k} gi,j,k 表示把区间 [ i , j ] [i,j] [i,j] 变成不含 k k k 的最小花费。除了普通的区间 DP,我们还可以把区间 [ i , j ] [i,j] [i,j] 先变成不含 k ′ k' k,再全部变成 k ′ k' k,这样也能达到要求。

所以容易写出转移: g i , j , k = min ⁡ l = i j − 1 ( g i , l , k + g l + 1 , j , k ) g_{i,j,k}=\displaystyle \min_{l=i}^{j-1}(g_{i,l,k}+g_{l+1,j,k}) gi,j,k=l=iminj1(gi,l,k+gl+1,j,k),然后记 m n mn mn min ⁡ k = 1 x g i , j , k \displaystyle \min_{k=1}^{x} g_{i,j,k} k=1minxgi,j,k,则有 g i , j , k = min ⁡ { g i , j , k , m n + 1 } g_{i,j,k} = \min\{g_{i,j,k},mn+1\} gi,j,k=min{gi,j,k,mn+1}

时间复杂度 O ( n 3 x ) O(n^3x) O(n3x),看似不能通过,但是区间 DP 会带一个大约 1 4 \frac{1}{4} 41 的常数。实测跑得飞快。

代码

#include <bits/stdc++.h>
using namespace std;

template<typename T> inline void read(T &x)
{
	x = 0;
	T f = 1;char ch = getchar();
	while(ch<'0'||ch>'9')
	{
		if(ch=='-')
		{
			f = -1,ch = getchar();
			break;
		}
		ch = getchar();
	}
	while(ch>='0'&&ch<='9')
		x = (x<<3)+(x<<1)+ch-48,ch = getchar();
	x*=f;
}
template<typename T> inline T read()
{
	T x;read(x);return x;
}
template<typename T> void write(T x)
{
    if(x<0) x = -x,putchar('-');
    if(x>9) write(x/10);
    putchar(x%10+48);
}
template<typename T> inline void writen(T x)
{
    write(x);
	putchar(10);
}
const int N = 1e2+5;
int n,m,a[N],f[N][N][N],g[N][N][N];
void solve()
{
    read(n),read(m);
    for(int i = 1;i<=n;i++) 
        for(int j = i;j<=n;j++)
            for(int k = 1;k<=m;k++)
                f[i][j][k] = g[i][j][k] = 2e9;
    for(int i = 1;i<=n;i++)
        for(int j = 1;j<=m;j++)
            g[i][i][j] = 0,f[i][i][j] = 1;
    for(int i = 1;i<=n;i++)
        read(a[i]),f[i][i][a[i]] = 0,g[i][i][a[i]] = 1;
    for(int len = 2;len<=n;len++)
        for(int i = 1,j = len;j<=n;i++,j++)
        {
            int mn = 2e9;
            for(int k = 1;k<=m;k++)
            {
                for(int l = i;l<j;l++)
                    g[i][j][k] = min(g[i][l][k]+g[l+1][j][k],g[i][j][k]);
                mn = min(mn,g[i][j][k]);
            }
            for(int k = 1;k<=m;k++) g[i][j][k] = min(g[i][j][k],mn+1),f[i][j][k] = g[i][j][k]+1;
            for(int k = 1;k<=m;k++)
                for(int l = i;l<j;l++)
                    f[i][j][k] = min(f[i][j][k],f[i][l][k]+f[l+1][j][k]);
        }
    int ans = 2e9;
    for(int i = 1;i<=m;i++)
        ans = min(ans,f[1][n][i]);
    writen(ans);
}
signed main()
{
//	freopen(".in","r",stdin);
//	freopen(".out","w",stdout);
    int T;
    read(T);
    while(T--) solve();
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值