智能反射面辅助无人机通信系统:原理、优化与性能分析
1. 无人机通信系统的优化挑战与解决方案
在无人机通信系统(UAVAC)中,视距(LoS)概率和路径损耗之间存在着一种权衡关系。这种权衡构成了系统达到最优性能的一个关键条件。然而,通过合理部署智能反射面(IRS)并采用无源波束赋形技术,可以打破这一传统的最优条件限制。
对于高机动性的无人机,联合优化无人机的轨迹和波束赋形是实现系统最优性能的最佳方案。以下是一些相关研究及成果:
- 提升保密速率 :有研究利用波束赋形功率、IRS处的相移矩阵以及无人机的轨迹,显著提升了系统的保密速率。与采用窃听消除方法的系统相比,所提出的IRS - UAV方案的保密速率提高了20%。
- 提高可达速率 :通过联合优化技术,系统的平均可达速率得到了有效提升。例如在某些研究中,针对高速列车场景,利用联合优化的优势提高了数据传输速率。
- 增强接收功率 :考虑多个IRS和多天线无人机系统,通过联合优化无源/有源波束赋形以及无人机轨迹,能够提高接收端的功率。
- 应对恶意干扰 :在存在恶意干扰的情况下,联合优化无人机轨迹、无源波束赋形和地面节点的功率分配,可以提高系统的可达平均速率。
传统的优化技术存在复杂度高的问题,但机器学习和人工智能技术为解决这一问题提供了新的途径。例如,基于深度Q网络(DQN)的方法适用于具有硬件限制以及离散轨迹和相移设计的系统;而基于深度确定性策略梯度(DDPG)的方法则适用于具有连续轨迹和相移设计的系统。此外,还有研究利用衰减深度Q网络(D
超级会员免费看
订阅专栏 解锁全文
34

被折叠的 条评论
为什么被折叠?



