10、智能反射面辅助无人机通信系统:原理、优化与性能分析

智能反射面辅助无人机通信系统:原理、优化与性能分析

1. 无人机通信系统的优化挑战与解决方案

在无人机通信系统(UAVAC)中,视距(LoS)概率和路径损耗之间存在着一种权衡关系。这种权衡构成了系统达到最优性能的一个关键条件。然而,通过合理部署智能反射面(IRS)并采用无源波束赋形技术,可以打破这一传统的最优条件限制。

对于高机动性的无人机,联合优化无人机的轨迹和波束赋形是实现系统最优性能的最佳方案。以下是一些相关研究及成果:
- 提升保密速率 :有研究利用波束赋形功率、IRS处的相移矩阵以及无人机的轨迹,显著提升了系统的保密速率。与采用窃听消除方法的系统相比,所提出的IRS - UAV方案的保密速率提高了20%。
- 提高可达速率 :通过联合优化技术,系统的平均可达速率得到了有效提升。例如在某些研究中,针对高速列车场景,利用联合优化的优势提高了数据传输速率。
- 增强接收功率 :考虑多个IRS和多天线无人机系统,通过联合优化无源/有源波束赋形以及无人机轨迹,能够提高接收端的功率。
- 应对恶意干扰 :在存在恶意干扰的情况下,联合优化无人机轨迹、无源波束赋形和地面节点的功率分配,可以提高系统的可达平均速率。

传统的优化技术存在复杂度高的问题,但机器学习和人工智能技术为解决这一问题提供了新的途径。例如,基于深度Q网络(DQN)的方法适用于具有硬件限制以及离散轨迹和相移设计的系统;而基于深度确定性策略梯度(DDPG)的方法则适用于具有连续轨迹和相移设计的系统。此外,还有研究利用衰减深度Q网络(D

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值