基于spark-streaming实时推荐系统( 二)

本文介绍了博主在电子商务背景下利用Flume-Kafka-Spark-Streaming-Redis搭建实时在线推荐系统的过程。针对初期系统性能问题,如任务堆积,通过模块化拆分和引入Redis缓存来提高响应速度。然而,Redis成为了系统瓶颈,为解决这一问题,采取了快速响应模块(FastRespons),在用户有行为时1秒内生成推荐结果。尽管Spark-Streaming的批次提交影响了整体速度,但通过调整优化,实现了更符合实时需求的推荐系统架构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电子商务时代,商家急切的寻求着对用户展示商品达到千人千面的效果,并且实时根据用户行为去实时更新待推荐的商品集。正如百度大boos李彦宏同学在乌镇物联网大会上所说:"机器学习的时代即将到来。"

博主从事推荐系统开发设计五年有余,深深的触摸到了机器学习时代的影子,从刚开始接触推荐,到先如今各大电子商务平台,甚而流媒体平台等都是搭建自己的推荐系统平台,让机器去学习用户的行为以便达到精准营销的目标。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值