链式前向星
链式前向星是邻接矩阵的一种。
如何用链式前向星来存图?
将上图存存完后应该是这个样子…
v表示顶点,len表示长度,eid 代表这条边的编号,next表示指向下一条边的编号
左边数组P[u]表示,以u 为起点 所指的第一条的边的编号
比如1号点和2号点之间有一条边长度为10,还和3号点有一条边长度为5
所以点集可以用数组表示,边集可以用结构体表示
const int max_n = 100;
const int max_m = 10000;
struct node{
int v,len;
int next;
}E[max_m];
int p[max_n],eid;
next 是指向下一条边的编号。
构图之前要初始化,顶点之间开始没有边,记为-1,每进入一条边用头插的方式。
编号一开始初始化为0。
void init()
{
memset(p,-1,sizeof(p));
eid=0;
}
用头插的方式加边
怎么给每条边编号呢?eid代表编号,初始化为0,每当加入一条边的时候eid++.
void insert(int u,int v,int len)
{
E[eid].v = v;
E[eid].len = len;
E[eid].next = p[u];
p[u] = eid++;
}
很明显可以根据每个点,遍历它所有的边,当next为-1时,说明遍历完全
int main()
{
init();
insert(1,2,10);
insert(1,3,5);
insert(2,3,1);
insert(3,5,10);
insert(3,4,6);
insert(5,4,11);
for(int u=1;u<=5;++u)
{
cout<<u<<": ";
for(int i = p[u];i+1;i = E[i].next)
{
cout<<E[i].v<<" "<<E[i].len<<" "<<i<<" ->";
}
cout<<endl;
}
return 0;
}
打印的结果和预期一样
当加入第一条边时 , P[1] = 0
当加入第二条边时
此时p[1] 值为1 E[eid].next值为0
然后整个过程都很好理解
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int max_n = 100;
const int max_m = 10000;
struct node{
int v,len;
int next;
}E[max_m];
int p[max_n],eid;
void init()
{
memset(p,-1,sizeof(p));
eid=0;
}
void insert(int u,int v,int len)
{
E[eid].v = v;
E[eid].len = len;
E[eid].next = p[u];
p[u] = eid++;
}
int main()
{
init();
insert(1,2,10);
insert(1,3,5);
insert(2,3,1);
insert(3,5,10);
insert(3,4,6);
insert(5,4,11);
for(int u=1;u<=5;++u)
{
cout<<u<<": ";
for(int i = p[u];i+1;i = E[i].next)
{
cout<<E[i].v<<" "<<E[i].len<<" "<<i<<" ->";
}
cout<<endl;
}
cout << p[1]<<endl;
cout << E[1].next<<endl;
return 0;
}