1.查看自己的显示适配器
明确一下用的是英伟达芯片的还是AIT(AMD)芯片的显卡
我的是AMD,不用考虑安装CUDA
如果是NVIDIA,建议安装CUDA,可以看下面博客。
Pytorch最全安装教程(一步到位)_pytorch安装_weiAweiww的博客-CSDN博客
CUDA它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序,利用GPUs的并行计算引擎来更加高效地解决比较复杂的计算难题。它将GPU视作一个数据并行计算设备,而且无需把这些计算映射到图形API。操作系统的多任务机制可以同时管理CUDA访问GPU和图形程序的运行库,其计算特性支持利用CUDA直观地编写GPU核心程序。
以下是安装PyTorch with CUDA的一些主要作用和好处:
-
GPU加速:PyTorch with CUDA可以利用GPU的并行计算能力,加速深度学习模型的训练和推理过程。CUDA可以充分利用GPU的并行性,提供更快的计算速度和更高的吞吐量。
-
大规模数据处理:在处理大规模数据集时,CUDA可以显著减少训练和推理的时间。通过利用GPU的并行计算能力,可以同时处理更多的数据和复杂的矩阵运算,提高整体的计算效率。
-
深度学习框架支持:安装PyTorch with CUDA可以使PyTorch与底层的CUDA库进行集成,实现更高效的计算和内存管理。这使得PyTorch可以更好地利用GPU的计算资源,并为用户提供更好的深度学习训练和推理体验。
需要注意的是,安装PyTorch with CUDA需要具备兼容的NVIDIA GPU,并正确安装GPU驱动程序和CUDA工具包。同时,还要确保在代码中正确设置和管理GPU设备,以确保PyTorch正确地使用CUDA进行加速计算。
2.查看python版本(可以在cmd中输入python --version进行查看)下一步要用
3.创建pytorch虚拟环境
由于我使用的是python3.9.13
进入cmd后输入指令
conda create -n pytorch python=3.9.13
4.进入环境
输入语句:切换不同空间
activate base
activate pytorch
5.安装pytorch
首先进入pytorch的官网:下载地址,向下滑,可以看到如图所示。
我的是AMD,所以Compute Platform选择CPU
由于我的显卡是AMD显卡,不支持cuda,所以无法安装GPU版本的pytorch。如果显卡是英伟达的,可在Compute Platform选择cuda版本
然后复制NOTE后的操作指令,可以直接复制,然后粘贴到刚才的cmd页面
提供下载缓慢的解决方案,我参考的博客提供了(由于我没有看完,所以没有用就直接下载了,慢,但是我也不是很着急,玩会手机就过去了。
AMD显卡如何用Anaconda安装pytorch_anaconda支持amd吗_m0_45172994的博客-CSDN博客
6.检验安装
输入python,然后进入python的工作环境,再输入import torch,最后再输入torch.__version__,如果有相应的版本号跳出,则证明pytorch安装完成。