R多元线性回归

多元线性回归  统计建模与R软件-薛毅书p325
选择自变量
建立多元线性模型
> data(swiss)
> s=lm(Fertility~ .,data=swiss)  #除因变量Fertility其他所有当自变量
> print(s)
模型汇总信息
> summary(s)  #查看相关性系数


逐步回归:
向前引入法:从一元回归开始,逐步增加变量,使指标值达到最优为止
向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止
逐步筛选法:综合上述两种方法
最优判断
RSS(残差平方和)与R2(相关系数平方)选择法:遍历所有可能的组合,选出使RSS
最小,R2最大的模型
AIC(Akaike information criterion)准则与BIC (Bayesian information criterion
)准则
AIC=n ln (RSS
p/n)+2p
n为变量总个数,p为选出的变量个数,AIC越小越好
step()函数计算AIC
s1=step(s,direction = "forward") #向前引入法
s1=step(s,direction = "backward") #向后剔除法
s1=step(s,direction = "both") #综合上述两种方法
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/q383700092/article/details/51546471
文章标签: R 多元线性回归
个人分类: R 算法 机器学习
上一篇R读取数据_转换时间_可视化实例
下一篇R分类
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭