多元线性回归分析(R语言)

本文详细介绍了多元线性回归模型、参数估计、回归方程的显著性检验和回归系数的显著性检验,并通过一个实际的房价数据集进行实战演练,包括数据预处理、建立模型、置信区间计算以及残差分析等步骤。
摘要由CSDN通过智能技术生成

▼多元线性回归分析▼

一、多元线性回归模型

设变量Y与X1,X2,……,Xp之间有线性关系

                                        Y = \beta _{0} + \beta _{1} X_{1}+ \beta _{2} X_{2}+ \cdots +\beta _{p} X_{p} + \varepsilon

其中  \varepsilon \sim N(0,\sigma ^{^{2}})  ,\beta _{0},\beta _{1},\beta _{2},\cdots ,\beta _{p} 和 \sigma ^{2} 是未知参数,p≥2,称上公式为多元线性回归模型。

二、参数估计

我们根据多元线性回归模型,认为误差 \varepsilon 应是比较小的,然后对 \beta _{0},\beta _{1},\beta _{2},\cdots ,\beta _{p} 求偏导并令其等于0,可以得到正规方程:

                                           X^{^{T}}X\beta = X^{T}Y

因为 rank(X^{T}X) = rank(X) = p+1 ,故 \left ( X^{T} X\right )^{-1} 存在,解正规方程,可以得到β的最小二乘估计:

   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值