1、多元线性回归模型
1.1多元回归模型与多元回归方程
设因变量为y,k个自变量分别为,描述因变量y如何依赖于自变量
和误差项ε的方程称为多元回归模型。其一般形式可表示为:
式中,为模型的参数,ε为随机误差项。
上式表明,y是的线性函数
加上随机误差项ε。随机误差项的解释见:随机误差项。
与一元线性回归类似,在多元线性回归模型中,对误差项同样有三个基本假设:
- 误差项期望为0;
- 对于自变量
的所有值,ε的值都相等;
- 误差项ε是一个服从正态分布的随机变量,且相互独立。
根据回归模型的假定,有
,
上式被称为多元回归方程,它描述了因变量y的期望值与自变量的关系。
1.2估计的多元回归方程
回归方程中的参数是未知的,正是我们感兴趣的值。因此,当用样本数据计算出来的
来去估计未知参数
时,就得到了估计的多元回归方程,其一般形式为:
式中,是参数
的估计值,
表示当
不变时,
每变动一个单位,y的平均变动量。其余偏回归系数含义类似。
1.3 参数的最小二乘估计
同一元线性回归的最小二乘法估计,使得残差平方和达到最小的