线段树模板(求最大最小)

#include<cstdio>

const int INF = 0xffffff0;
const long long IINF = 1e18;
int minV = INF;
int maxV = -INF;


int max(int &a, int &b)
{
    return a > b ? a : b;
}
int min(int &a, int &b)
{
    return a < b ? a : b;
}

struct Node//不要左右子节点指针的做法
{
    int L, R;
    int minV, maxV;
    int Mid()
    {
        return (L + R) / 2;
    }
}tree[800000];//4倍叶子节点的数量就够

void BuildTree(int root, int L, int R)
{
    tree[root].L = L;
    tree[root].R = R;
    tree[root].minV = INF;
    tree[root].maxV = -INF;
    if (L != R)
    {
        BuildTree(2 * root + 1, L, (L + R) / 2);
        BuildTree(2 * root + 2, (L + R) / 2 + 1, R);
    }
}

void Insert(int root, int i, int v)//将第i个数,其值为v,插入线段树
{
    if (tree[root].L == tree[root].R)
    {
        tree[root].minV = tree[root].maxV = v;
        return;
    }
    tree[root].minV = min(tree[root].minV, v);
    tree[root].maxV = max(tree[root].maxV, v);
    if (i <= tree[root].Mid())Insert(2 * root + 1, i, v);
    else Insert(2 * root + 2, i, v);
}

void Query(int root, int s, int e)//查询区间[s,e]中的最小值和最大值,如果更优就记录在全
{
    if (tree[root].minV >= minV&&tree[root].maxV <= maxV)
    {
        return;
    }
    if (tree[root].L == s&&tree[root].R == e)
    {
        minV = min(minV, tree[root].minV);
        maxV = max(maxV, tree[root].maxV);
        return;
    }
    if (e <= tree[root].Mid())Query(2 * root + 1, s, e);
    else if (s > tree[root].Mid())Query(2 * root + 2, s, e);
    else
    {
        Query(2 * root + 1, s, tree[root].Mid());
        Query(2 * root + 2, tree[root].Mid() + 1, e);
    }
}
int main()
{
    int n, q, h;
    int i, j, k;
    while (scanf("%d%d", &n, &q))
    {
        BuildTree(0, 1, n);
        for (int i = 1; i <= n; i++)
        {
            scanf("%d", &h);
            Insert(0, i, h);
        }
        for (int i = 0; i < q; i++)
        {
            int s, e;
            char ch[3];
            scanf("%s", ch);
            if (ch[0] == 'Q')
            {
                scanf("%d%d", &s, &e);
                minV = INF;
                maxV = -INF;
                Query(0, s, e);
                printf("%d\n", maxV);
            }
            else
            {
                scanf("%d%d", &s, &e);
                Insert(0, s, e);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值