题图摄于颐和园
(本文作者系 VMware 中国研发云原生实验室工程师,联邦学习 FATE / KubeFATE 开源项目贡献者。)
需要加入KubeFATE开源项目讨论群的同学,请关注本公众号后回复 “kubefate” 即可。
相关文章:
使用Docker Compose 部署FATE v1.5.0
概要
联邦学习开源框架 FATE 发布了1.5版本。由于该版本为长期支持版本(LTS),因此无论是在性能和稳定性上相对于之前的版本都有了比较大的提升,建议还没有升级的用户可以及时更新。
FATE 在 v1.5 有两个比较重要的改动,一个是可以使用 Spark 作为底层计算引擎;另一个则是提供了 "fate_client" 开发工具。后者在很大程度上方便了用户与FATE 集群的交互,本文将配合 Juypter Notebook 来着重介绍 "fate_client" 的使用。而对使用 Spark 作为底层计算引擎感兴趣的读者可以关注本系列文章,我们将会在后续文章中对其架构和使用进行介绍。
Jupyter Notebook 环境准备
对于使用 KubeFATE 来部署集群的用户来说,部署完成后通过docker
或者kubectl
命令列出容器时会发现一个名为 "client" 的容器。该容器是是一个 Jupyter Notebook 服务,并且已经集成了 "fate_client",因此用户打开 Notebook 后可以直接使用相应的包与 FATE 集群进行交互。