二维数组中的查找

本文介绍了一种在二维数组中快速查找目标整数的方法,该数组每行和每列均有序。利用从右上角或左下角开始的策略,通过比较目标值与当前元素的关系,逐步缩小搜索范围,最终达到O(M+N)的时间复杂度和O(1)的空间复杂度。代码示例展示了具体实现过程。
摘要由CSDN通过智能技术生成


一、题目

  在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

二、代码实现

1.思考过程

  要求时间复杂度O(M+N),空间复杂度O(1)。其中M为行数,N为列数。该二维数组中的一个数,小于它的数一定在其左边,大于它的数一定在其下边。因此,从右上角或左下角开始查找,就可以根据 target 和当前元素的大小关系来缩小查找区间,当前元素的查找区间为左下角或右上角的所有元素。

2.代码实现

代码如下(示例):

bool Find(int target, vector<vector<int>> array)
{
	int rows = array.size();
	if (row == 0)
		return false;
	int cols = array[0].size();
	if (cols == 0)
		return false;

	int row = rows - 1;
	int col = cols - 1;
	while (row >= 0 && col < cols)
	{
		if (array[row][col] < target)
			++col;
		else if (array[row][col] > target)
			--row;
		else
			return true;
	}
	return false;
}

总结

  1. 考查对二维数组的理解及编程能力。二维数组在内存中占据连续的空间。在内存中从上到下存储各行元素,在同一行中按照从左到右的顺序存储。因此我们可以根据行号和列号计算出相对于数组首地址的偏移量,从而找到对应的元素。
  2. 考查分析问题的能力。当发现问题比较复杂时,能不能通过具体的例子找出其中的规律,是能否解决这个问题的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值