逻辑回归(Logistic Regression)是一种广义线性模型,在分类问题中广泛应用,特别是二分类问题。逻辑回归可以通过把输入的特征与权重线性组合,再通过逻辑函数(sigmoid函数)将结果映射到0~1之间,来预测样本属于类别1的概率。
逻辑回归的模型结构与线性回归非常相似,但逻辑回归的输出值不再是一个连续变量,而是一个离散变量。具体而言,逻辑回归的模型可以表示为:
y = sigmoid(w1*x1 + w2*x2 + ... + wn*xn + b)
其中,sigmoid函数为:
sigmoid(z) = 1 / (1 + exp(-z))
可以看出,逻辑回归的模型输出值y的范围在0~1之间,表示样本属于类别1的概率。当y>0.5时,我们将样本预测为属于类别1;反之,当y<=0.5时,我们将样本预测为属于类别0。
逻辑回归的训练过程与线性回归类似,其目标是最小化损失函数,常见的损失函数是交叉熵损失函数。具体而言,我们首先需要定义样本的标签为0或1,然后对于一个给定的样本,其交叉熵损失函数为:
H(y, y_hat) = -[y*log(y_hat) + (1-y)*log(1-y_hat)]
其中,y是样本的真实标签值,y_hat是逻辑回归模型的预测值。通过最小化所有样本的交叉熵损失函数,我们可以求得逻辑回归的最优参数。
逻辑回归的优点在于它具有较好的可解释性,模型输出值可以被解释为概率,也可以用于特征的重要性评估。此外,逻辑回归具有较好的鲁棒性,不容易受到异常值的影响。逻辑回归也具有较快的训练速度和较低的模型复杂度。
在实践中,逻辑回归作为一个简单而有效的分类模型,常被用于常规的二分类问题,例如垃圾邮件识别、信用风险评估等。此外,逻辑回归也可用于多分类任务中,例如通过使用one-vs-all或softmax等策略将逻辑回归扩展到多个类别。