【扩散模型】本质是数学概率模型

课程地址:https://github.com/huggingface/diffusion-models-class/blob/main/unit2/

今天跟随DataWhale的直播课程,进一步认识到模型的本质都是概率模型。扩散模型中通过在 UNet 下采样增加噪声,训练拟合噪声,在推理时从tn逐步预测t0的图像。

ControlNet 和 CLIP 等本质是在操控 UNet 的部分,同时 CLIP 是通过对比学习的方式通过图像文本对训练出来的。

最后用扩散模型生成的手写数字如下图:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
HTM(Hierarchical Temporal Memory)是一种基于神经科学原理的机器学习算法,它用于处理时序数据和模式识别任务。HTM算法中的概率模型主要用于对数据进行建模和预测。 下面是HTM概率模型数学推导过程: 假设我们有一个时序数据集合 $D=\{x_1,x_2,...,x_T\}$,其中 $x_t$ 表示时刻 $t$ 的数据。我们希望用HTM算法对该数据进行建模和预测。 首先,我们需要定义一个概率模型来描述数据的生成过程。假设数据是由若干个隐藏变量和观测变量共同生成的,其中隐藏变量表示数据的内在结构和规律,观测变量表示我们能够观测到的数据。我们将隐藏变量记作 $h_t$,观测变量记作 $x_t$。 接下来,我们假设隐藏变量和观测变量之间存在一个条件概率分布 $P(x_t|h_t)$,表示在给定隐藏变量 $h_t$ 的情况下,观测变量 $x_t$ 的概率分布。为了简化问题,我们通常假设 $P(x_t|h_t)$ 是一个高斯分布,即: $$ P(x_t|h_t) = \frac{1}{\sqrt{(2\pi)^n|\Sigma|}}\exp\left(-\frac{1}{2}(x_t-\mu_t)^T\Sigma^{-1}(x_t-\mu_t)\right) $$ 其中,$n$ 表示观测变量的维度,$\mu_t$ 和 $\Sigma$ 分别表示在给定隐藏变量 $h_t$ 的情况下,观测变量 $x_t$ 的均值向量和协方差矩阵。 接着,我们假设隐藏变量之间存在一个转移概率分布 $P(h_t|h_{t-1})$,表示在给定上一时刻的隐藏变量 $h_{t-1}$ 的情况下,当前时刻的隐藏变量 $h_t$ 的概率分布。为了简化问题,我们通常假设 $P(h_t|h_{t-1})$ 是一个高斯分布,即: $$ P(h_t|h_{t-1}) = \frac{1}{\sqrt{(2\pi)^m|\Sigma_h|}}\exp\left(-\frac{1}{2}(h_t-\Phi h_{t-1})^T\Sigma_h^{-1}(h_t-\Phi h_{t-1})\right) $$ 其中,$m$ 表示隐藏变量的维度,$\Phi$ 和 $\Sigma_h$ 分别表示转移矩阵和协方差矩阵。 最后,我们假设初始状态的隐藏变量 $h_1$ 服从一个高斯分布 $P(h_1)$,表示在初始时刻,隐藏变量 $h_1$ 的概率分布。 综合以上三个假设,我们可以得到一个完整的概率模型,即: $$ P(D) = P(h_1)\prod_{t=2}^{T}P(h_t|h_{t-1})\prod_{t=1}^{T}P(x_t|h_t) $$ 其中,$P(D)$ 表示数据集合 $D$ 的概率分布。我们可以通过最大化 $P(D)$ 来求出最优的模型参数,从而对数据进行建模和预测。具体的参数估计方法可以使用EM算法或者变分推断等技术来实现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值