机器学习常见面试题总结

本文探讨了泛华误差的分解,包括偏差、方差和噪声的概念,以及它们与过拟合和欠拟合的关系。通过比较KNN和K-means,以及提出解决过拟合和欠拟合的方法,如增加数据、简化模型、正则化等,帮助读者理解模型优化的核心策略。
摘要由CSDN通过智能技术生成

1、泛华误差的分解

训练模型的目的——最小化损失函数——泛化误差可以分解为偏差(Biase)方差(Variance)噪声(Noise)。

bias:拟合值和真实值之间有较大的偏差。所有可能的训练数据集训练出的所有模型的输出的平均值真实模型的输出值之间的差异。

varience:反映的是拟合值波动的情况。不同的训练数据集训练出的模型输出值之间的差异。

Noise:噪声的存在是学习算法所无法解决的问题,数据的质量决定了学习的上限。假设在数据已经给定的情况下,此时上限已定,我们要做的就是尽可能的接近这个上限。

2、偏差、方差与过拟合、欠拟合的关系?

偏差(Bias)与方差(Variance) - 知乎 (zhihu.com)

 3、trade-off between bias and variance

泛华误差=偏差(Biase)+方差(Variance)+噪声(Noise)。

从本质上讲,如果你使模型更复杂并添加更多变量,你将会失去一些 Bias 但获得一些 Variance,这就是我们所说的权衡(tradeoff)。这也是为什么我们在建模的过程中,不希望这个模型同时拥有高的偏差和方差。

4、KNN对比K-means

有监督和无监督。

都是基于距离的。

KNN算法(K-Nearest Neighbors)是一种基本的分类和回归方法。它的基本思想是:对于给定的训练样本集,对新的输入实例,在训练样本集中找到与该实例最近邻的K个实例,这K个实例的多数属于某个类别,则把该输入实例分为这个类别。 KNN算法的实现很简单,但是对于特征较多的数据集,计算开销会比较大。

5、过拟合和欠拟合

- 过拟合:模型过度适应训练数据,导致在未见过的数据上表现不佳。这意味着模型学习到了训练数据中的噪声和异常特性,而不是泛化到整个数据集的真实模式。过拟合通常发生在模型过于复杂、训练数据量不足或者数据噪声过多的情况下。

- 欠拟合:模型未能很好地拟合训练数据,导致在训练数据和测试数据上都表现不佳。这表示模型没有捕获数据中的真实模式,通常是由于模型过于简单或者特征不足的原因。

解决过拟合和欠拟合的方法包括:

过拟合的解决方法:
  - 增加数据量:提供更多的训练数据可以帮助模型更好地泛化。
  - 简化模型:减少模型的复杂度,如减少参数数量、使用正则化等。
  - 数据清洗:去除噪声或异常值,以减少模型对这些不相关特性的过度拟合。
  - 交叉验证:使用交叉验证技术评估模型在不同数据子集上的性能,避免仅依赖单一的训练-测试数据集划分。

欠拟合的解决方法:
  - 增加模型复杂度:增加模型的参数数量或者使用更复杂的模型架构。
  - 添加新特征:增加更多相关的特征,以帮助模型更好地捕获数据中的模式。
  - 减小正则化程度:如果使用了正则化技术,可以尝试减小正则化的程度。
  - 特征工程:通过特征转换、降维等方法提取更有用的特征。

识别过拟合和欠拟合的方法:

1. 观察学习曲线:绘制模型的学习曲线,包括训练集和验证集的损失(或准确率)随着训练样本数量的变化。过拟合的模型在训练集上表现较好但在验证集上表现较差,而欠拟合的模型在两者上都表现较差。

2. 交叉验证:使用交叉验证技术,例如 k 折交叉验证,来评估模型在不同数据子集上的表现。如果模型在训练集上表现很好但在验证集或测试集上表现差,则可能存在过拟合问题。

3. 使用验证集:将数据集划分为训练集、验证集和测试集。训练模型时使用训练集,调整超参数和模型结构时使用验证集,最后评估模型性能时使用测试集。

4. 正则化技术:如果使用了正则化方法(如 L1 正则化、L2 正则化),观察正则化项的权重,过大的正则化项可能导致欠拟合,过小的正则化项可能导致过拟合。

5. 特征重要性分析:通过分析模型中特征的重要性或权重,可以了解模型是否过于依赖某些特征,从而判断是否存在过拟合或欠拟合问题。

  • 7
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: BAT机器学习面试1000题320主要涵盖了一些机器学习中的基础知识和概念。其中包括了监督学习、无监督学习、强化学习、深度学习、特征工程、模型评估与选择、模型调优等方面的内容。 首先,监督学习是机器学习中最常见的一类任务,通过给定的输入和输出数据来训练模型,然后利用该模型进行预测。常用的监督学习算法包括线性回归、逻辑回归、决策树、支持向量机等。 无监督学习是指在没有标签的情况下,通过对数据的内在结构和统计特性的学习来进行模式识别和数据聚类等任务。常用的无监督学习算法包括聚类、降维、关联规则等。 强化学习是一种通过试错探索来进行学习的方法,代理在与环境互动的过程中,通过选择行动和接受奖励来最大化累计奖励。常用的强化学习算法包括Q-learning、Deep Q Network等。 深度学习是机器学习领域的一个重要分支,其核心思想是通过构建多层神经网络模型来进行模式识别、分类和预测等任务。常用的深度学习算法包括卷积神经网络、循环神经网络、生成对抗网络等。 特征工程是指对原始数据进行处理和转换,以提取出更有用的特征来训练模型。常用的特征工程方法包括特征选择、特征提取、特征组合等。 模型评估与选择是判断模型性能优劣的重要步骤,常用的评估指标包括准确率、召回率、精确率、F1值等。 模型调优是通过对超参数进行调整来优化模型性能的过程,常用的调优方法包括网格搜索、随机搜索、贝叶斯优化等。 以上是对BAT机器学习面试1000题320的简要回答,涉及到了机器学习中的基础知识和概念,这些知识点对于从事机器学习相关工作的求职者来说是必备的。同时,深入理解这些知识点也有助于在实际工作中更好地应用机器学习算法。 ### 回答2: BAT是中国三大科技巨头,分别指百度、阿里巴巴和腾讯。面试1000题320则是针对机器学习领域的一个面试题库。回答这个问题时,可以从以下几个方面进行阐述: 首先,机器学习是目前计算机科学领域的热门方向,被广泛应用于各个行业和领域。因此,BAT公司作为科技巨头,对机器学习岗位有着很高的需求。面试1000题320是一套比较全面、深入的机器学习面试题库,用于选拔和评估面试者的技术能力和知识深度。 其次,回答这个问题时可以提到,这套题库对于机器学习领域的知识体系做了很好的总结和覆盖。通过解答这些问题,不仅可以考察面试者对于基础理论的理解和掌握程度,还能够测试面试者在实际问题中应用机器学习算法的能力。 再次,回答这个问题时可以强调面试1000题320的重要性和价值。这套题库是基于BAT公司多年实践经验总结而成,对于应聘者来说,通过学习和解答这些问题,可以更好地准备面试,提高竞争力,增加成功的机会。 最后,回答这个问题时可以提到,虽然这套题库有很多问题,但对于机器学习这个领域来说,知识是源源不断的,所以并不仅限于这1000题320。应聘者应该有持续学习的态度,随时关注最新的研究进展和业界动态,保持自身的知识更新和技术成长。 总之,BAT机器学习面试1000题320是一套全面、深入的面试题库,对于应聘者来说具有重要的指导和培训价值。通过学习和解答这些问题,可以更好地准备机器学习领域的面试,并提高竞争力和成功的机会。但同时也要注意,持续学习和跟进最新的研究进展才能在这个领域中不断成长和进步。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值