【文献阅读】Deep Anomaly Detection with Outlier Exposure

本文探讨了深度异常检测方法,提出了Outlier Exposure (OE)技术,通过训练模型识别异常数据来增强异常检测器的泛化能力。OE在自然语言处理和图像任务上表现出色,尤其是在大规模图像数据上。实验表明,OE可以显著提高OOD检测性能,改进模型校准,并且适用于多种数据集和任务。此外,OE还提升了基于密度估计的异常检测效果,尤其是对于分布不均匀的数据。
摘要由CSDN通过智能技术生成

深度异常检测与异常暴露

Abstract

在部署机器学习系统时,检测异常的输入非常重要。更大、更复杂的输入,加大了区分异常examples和分布内example的难度。与此同时,各种各样的图像和文本数据也大量存在。我们建议利用这些数据来改进异常检测方法,方法是利用一个辅助的异常数据集训练异常检测器,我们称之为异常暴露(OE)。这使得异常检测器能够泛化并检测没有见过的异常样本。在大量的自然语言处理实验和小尺度和大尺度视觉任务中,我们发现OE显著提高了检测性能。我们还观察到,在CIFAR-10上训练的尖端生成模型可能会给SVHN图像分配比CIFAR-10图像更高的可能性;我们使用OE来缓解这个问题。我们还分析了OE的灵活性和鲁棒性,并分析了提高性能的辅助数据集的特征

1 Introduction

在本文中,我们研究了一种补充的方法(常接在别的自监督模型后面),我们训练模型来检测未建模的数据(即异常数据),通过学习,提示是否输入是未建模的。虽然很难为完整的数据分布建模,但我们可以通过将模型暴露于OOD examples 来学习检测OOD输入,从而学习更保守的Inliers,并能够检测新的异常形式。为此,我们建议利用不同的、真实的数据集,使用一种我们称为离群值暴露(OE)的方法。OE提供了一种简单有效的方法来持续改进现有的OOD检测方法。

OE有助于异常检测器泛化OOD数据的未曾见过的分布,甚至在大规模图像上也能表现良好。我们还证明了异常暴露比现有的几种OOD检测方法有所提高。我们的结果还显示了异常暴露的灵活性,因为我们可以用不同的异常分布源来训练各种模型。此外,我们确定OE可以使OOD样本的密度估计对OOD检测更加有用。最后,我们证明了OE改善了神经网络分类器在真实环境中的校准,其中一部分数据是OOD的。

2 Related Work

3 Outlier Exposure

我们考虑决定一个任务,即样本是否来自 D i n D_{in} Din的已知分布,或来自 D o u t D_{out} Dout

在实际应用中,可能很难提前知道异常值的分布。因此,我们认为现实环境中的 D o u t D_{out} Dout是未知的。

给定一个参数化的OOD检测器和一个 D o u t t e s t D_{out}^{test} Douttest不相交的OE数据集,我们训练模型来发现信号,并学习算法来检测query来自于 D i n D_{in} Din还是 D o u t O E D_{out}^{OE} DoutOE

我们发现我们的算法可以推广到未曾见过的分布 D o u t D_{out} Dout

深度参数化异常检测器通常从辅助任务中进行表示学习,例如分类或密度估计。(意思就是说将异常检测任务转化为一个辅助任务,即分类或者检测)给定一个模型 f f f和最初的学习目标 L L L,我们可以通过调参 f f f将OE最小化目标
在这里插入图片描述
在此案例中,由于label是不可获取的,所以 y y y可以被忽略
OE可以被应用在许多类型的数据集和原始任务上,因此 L O E L_{OE} LOE的具体公式依据任务和OOD检测器的使用而定

例如当使用基于maximum softmax probability的检测器时,我们设置 L O E L_{OE} LOE f ( x ′ ) f(x') f(x)和均匀分布的cross-entropy

当原始目标 L L L是密度估计并且label无法获取时,我们将 L O E L_{OE} LOE设置为对数似然 f ( x ′ ) f(x')

异常检测综述是关于在不同的研究领域和应用领域中进行研究的一个重要问题。许多异常检测技术已经具体解决了这个问题的表述。不同的因素,如数据的性质、标记数据的可用性和要检测的异常类型等,会导致异常检测问题的挑战。通常,这些因素是由应用领域决定的,需要检测哪些异常。研究人员采用了统计学、机器学习、数据挖掘、信息论、光谱理论等不同学科的概念,并将其应用于具体的问题公式。通过图2可以看到与任何异常检测技术相关的关键组件。 与关于点异常检测技术的丰富文献相比,对上下文异常检测的研究相对有限。一般来说,这类技术可以分为两类。第一类技术将上下文异常检测问题简化为点异常检测问题,而第二类技术则对数据中的结构进行建模,并使用该模型来检测异常。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Anomaly Detection_A Survey](https://download.csdn.net/download/juicymeng/10387314)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [异常检测综述(Anomaly Detection: A Survey)](https://blog.csdn.net/weixin_43883602/article/details/124472597)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值