【动手学习深度学习(李沐)】笔记(2021-11-11)

这篇博客记录了个人在学习深度学习过程中关于Python生成器(yield)、反向传播时梯度的存储方式、PyTorch求导机制的适用范围以及Tensor与NumPy数组之间的转化等知识点的理解与笔记,旨在方便后续查阅。
摘要由CSDN通过智能技术生成

个人在看书过程中的随笔记录,只局限于自己看得懂,方便后续查看

1 yield的一些用法和原理
  • Iterables迭代器,比如lists, strings, 文件,我们专门为他们开辟了内存去储存所有内容,一项一项地读取其项目称为迭代
mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

我们可以随心所欲地读取它们,但是将所有值存储在内存中,当我们有很多值时,这并不总是您想要的。比如神经网络训练的样本选取。

  • Generators
    generators是一种只能迭代一次的可迭代对象。生成器不会将所有值存储在内存中,只在用到的时候及时生成:
>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值