毕业设计:新能源汽车数据分析可视化系统+爬虫(源码+文档)

本文介绍了2023-2024年计算机专业的毕业设计选题,聚焦于基于Python、Django、Vue和相关技术栈的新能源汽车数据采集、处理、分析和可视化系统。系统功能包括车型详情展示、数据筛选、销售排行等,并展示了部分关键代码片段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)

毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。

1、项目介绍

技术栈:
Python语言、Django框架 、MySQL数据库、Vue框架、Scrapy爬虫、Echarts可视化、懂车帝网数据

2、项目界面

(1)车型详情页

![在这里在这里插入图片描述

(2)新能源汽车条件筛选

在这里插入图片描述

(3)新能源汽车车型分析

在这里插入图片描述

(4)新能源汽车数据可视化分析

在这里插入图片描述

(5)新能源汽车数据可视化分析(柱状图)

在这里插入图片描述

(6)新能源汽车销量榜单

在这里插入图片描述

(7)新能源汽车差评榜单
在这里插入图片描述

(8)新能源汽车数据后台管理
在这里插入图片描述

(9)车型销量统计

在这里插入图片描述

(10)数据采集页面

在这里插入图片描述

(11)注册登录界面

在这里插入图片描述

3、项目说明

基于Django框架和Vue框架的新能源汽车数据采集分析可视化系统是一个用于收集、分析和展示新能源汽车相关数据的系统。该系统利用Django框架作为后端开发工具,使用Vue框架构建前端界面,旨在为用户提供一个直观、易用的数据分析和可视化平台。

该系统的主要功能包括数据采集、数据处理、数据分析和数据可视化。首先,系统通过与新能源汽车相关的传感器和设备进行连接,实时采集各种数据,例如电池状态、充电效率和车辆行驶数据等。然后,系统将采集到的原始数据进行预处理和清洗,以确保数据的准确性和完整性。

接下来,系统利用分析算法和模型对数据进行分析,提取出有价值的信息和洞察,并生成相应的报告和图表。用户可以根据自己的需求选择不同的分析方法和指标,以深入了解新能源汽车的性能和效率。

最后,系统通过可视化方式将分析结果展示给用户。用户可以通过直观的图表、图形和地图来查看数据的趋势、变化和关联性。此外,系统也提供了交互式的功能,用户可以根据自己的兴趣和需求进行数据的筛选、排序和比较。

总之,基于Django框架和Vue框架的新能源汽车数据采集分析可视化系统是一个功能强大、易用的工具,能够帮助用户深入理解和分析新能源汽车相关数据,为相关领域的决策提供支持。

4、部分代码




def to_dict(l, exclude=tuple(), single=False):
    # 将数据库模型 变为 字典数据 的工具类函数
    def transform(v):
        if isinstance(v, datetime):
            return v.strftime("%Y-%m-%d %H:%M:%S")
        return v

    def _todict(obj):
        j = {
            k: transform(v)
            for k, v in obj.__dict__.items()
            if not k.startswith("_") and k not in exclude
        }
        return j

    if single:
        return _todict(l)
    return [_todict(i) for i in l]


def all_grouped_brands(request):
    """
    返回按拼音分组的所有品牌的JSON响应。

    Args:
        request (HttpRequest): HTTP请求对象。

    Returns:
        JsonResponse: 按拼音分组的所有品牌的JSON响应。
    """
    # 获取请求数据
    data = request.json

    # 获取所有品牌并转换为字典
    brands = to_dict(Brand.objects.all().order_by("pinyin", "-on_sale_series_count"))

    # 按拼音分组品牌
    result = [(i[0], list(i[1])) for i in groupby(brands, key=lambda x: x["pinyin"])]

    # 返回JSON响应
    return JsonResponse(result, safe=False)


def query_car_series(request):
    """根据请求参数查询车系。

    Args:
        request (HttpRequest): HTTP请求。

    Returns:
        JsonResponse: 包含车系的JSON响应。
    """
    # 获取请求参数
    body = request.json
    pagesize = body.get("pagesize", 10)
    page = body.get("page", 1)
    exclude_fields = ["pagesize", "page", "total", "orderby"]
    orderby = body.get("orderby")

    # 从请求参数构建查询
    query = {k: v for k, v in body.items() if k not in exclude_fields and v}
    q = Q(**query)

    # 获取车系对象并对结果进行分页
    objs = CarSeries.objects.filter(q).order_by(orderby)
    paginator = Paginator(objs, pagesize)

    # 获取指定页面并将结果转换为字典列表
    try:
        pg = paginator.page(page)
        result = list(pg.object_list)
    except Exception as e:
        result = []

    result = to_dict(result)

    # 将结果作为JSON响应返回
    return JsonResponse({"total": paginator.count, "records": result})


def lasted_sales_rank_months(request):
    months = list(
        CarSale.objects.values_list("month", flat=True)
        .order_by("-month")
        .distinct()[:24]
    )
    return JsonResponse(months, safe=False)


def lasted_sales_issue_months(request):
    months = list(
        CarIssue.objects.values_list("stime", flat=True)
        .order_by("-stime")
        .distinct()[:24]
    )
    return JsonResponse(months, safe=False)


def car_rank(request):
    body = request.json
    id = body.get("id")
    return _car_rank(id)


@lru_cache()
def _car_rank(id):
    # 获取当前日期及1年前的日期
    today = datetime.now().date()
    one_year_ago = today - timedelta(days=365)
    # 设置查询条件
    q = Q(month__gte=one_year_ago.strftime("%Y%m"), month__lte=today.strftime("%Y%m"))
    result = (
        CarSale.objects.filter(q)
        .values("series_id", "series_name")
        .annotate(total_sales=Sum("rank_value"))
        .filter(total_sales__gt=0)
        .order_by("-total_sales")
    )
    sales_rank = next(
        (
            i
            for i, e in enumerate(
                result,
                start=1,
            )
            if e["series_id"] == int(id)
        ),
        -1,
    )
    # ---------
    # 获取当前日期及1年前的日期
    q = Q(
        stime__gte=one_year_ago.strftime("%Y-%m-%d"),
        stime__lte=today.strftime("%Y-%m-%d"),
    )
    result = (
        CarIssue.objects.filter(q)
        .values("series_id", "series_name")
        .annotate(total_issues=Sum("count"))
        .filter(total_issues__gt=0)
        .order_by("-total_issues")
    )
    issue_rank = next(
        (
            i
            for i, e in enumerate(
                result,
                start=1,
            )
            if e["series_id"] == int(id)
        ),
        -1,
    )

    return JsonResponse(dict(sales_rank=sales_rank, issue_rank=issue_rank))


def car_sales_rank(request):
    # 获取请求体中的数据
    body = request.json
    # 获取请求体中的月份
    month = body.get("month")
    # 定义查询条件
    q = Q()
    # 根据月份设置查询条件
    if month == "1y":
        # 获取当前日期及1年前的日期
        today = datetime.now().date()
        one_year_ago = today - timedelta(days=365)
        # 设置查询条件
        q &= Q(
            month__gte=one_year_ago.strftime("%Y%m"), month__lte=today.strftime("%Y%m")
        )
    elif month == "6m":
        # 近半年,即6个月
        today = datetime.now().date()
        half_year_ago = today - timedelta(days=365 // 2)
        # 设置查询条件
        q &= Q(
            month__gte=half_year_ago.strftime("%Y%m"), month__lte=today.strftime("%Y%m")
        )
    else:
        q &= Q(month=month)
    # 统计各个车系一年内的总销量,并按照销量进行排序和排名
    result = (
        CarSale.objects.filter(q)
        .values("series_id", "series_name")
        .annotate(total_sales=Sum("rank_value"))
        .order_by("-total_sales")
    )
    # 对结果进行排名
    result_list = list(result)
    for i, item in enumerate(result_list):
        item["sales_rank"] = i + 1
    # 分页处理数据
    pagesize = body.get("pagesize", 20)
    page_num = body.get("page", 1)
    paginator = Paginator(result_list, pagesize)  # 创建Paginator对象
    page = paginator.get_page(page_num)  # 获取指定页码的数据
    result = list(page.object_list)
    # 获取每个车系的详细信息,并将其添加到结果中
    for i in result:
        car_series = to_dict([CarSeries.objects.get(series_id=i["series_id"])])[0]
        i.update(**car_series)
    # 返回分页后的结果
    return JsonResponse({"total": paginator.count, "records": result})


def car_issue_rank(request):
    body = request.json
    stime = body.get("stime")
    type = body.get("type")
    q = Q()
    if stime == "1y":
        # 获取当前日期及1年前的日期
        today = datetime.now().date()
        one_year_ago = today - timedelta(days=365)
        q &= Q(
            stime__gte=one_year_ago.strftime("%Y-%m-%d"),
            stime__lte=today.strftime("%Y-%m-%d"),
        )
    elif stime == "6m":
        # 近半年,即6个月
        today = datetime.now().date()
        half_year_ago = today - timedelta(days=365 // 2)
        q &= Q(
            stime__gte=half_year_ago.strftime("%Y-%m-%d"),
            stime__lte=today.strftime("%Y-%m-%d"),
        )
    else:
        q &= Q(stime=stime)
    if type:
        q &= Q(type=type)
    # 统计各个车系一年内的总问题数,并按照问题数进行排序和排名
    result = (
        CarIssue.objects.filter(q)
        .values("series_id", "series_name")
        .annotate(total_issues=Sum("count"))
        .order_by("-total_issues")
    )

    # 对结果进行排名
    result_list = list(result)
    for i, item in enumerate(result_list):
        item["issues_rank"] = i + 1

    # 分页处理数据
    pagesize = body.get("pagesize", 20)
    page_num = body.get("page", 1)
    paginator = Paginator(result_list, pagesize)  # 创建Paginator对象
    page = paginator.get_page(page_num)  # 获取指定页码的数据
    result = list(page.object_list)
    for i in result:
        car_series = to_dict([CarSeries.objects.get(series_id=i["series_id"])])[0]
        counter = Counter()
        for x in CarIssue.objects.filter(q, series_id=i["series_id"]).values_list(
            "dxwt", flat=True
        ):
            counter.update(dict([(j["ctiTitle"], j["count"]) for j in x]))
        i["issues"] = counter.most_common(10)
        i.update(**car_series)
    return JsonResponse({"total": paginator.count, "records": result})



源码获取:

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

### 关于大数据爬取新能源汽车销量数据 对于毕业设计中的大数据爬取项目,特别是针对新能源汽车销量的数据采集工作,可以采用Python编程语言及其丰富的库来实现。Scrapy是一个强大的用于抓取网页内容并提取结构化数据的框架[^1]。 #### Scrapy安装 为了开始这个过程,首先需要确保环境中已经安装了Scrapy: ```bash pip install scrapy ``` #### 创建Scrapy项目 创建一个新的Scrapy项目可以通过命令行完成: ```bash scrapy startproject new_energy_cars_sales cd new_energy_cars_sales ``` #### 定义Item类 定义一个名为`NewEnergyCarSalesItem`的item用来存储每条记录的关键信息字段,比如日期、品牌名以及销售数量等属性: ```python import scrapy class NewEnergyCarSalesItem(scrapy.Item): date = scrapy.Field() # 发布时间 brand_name = scrapy.Field()# 品牌名称 sales_volume = scrapy.Field() # 销售量 ``` #### 编写Spider脚本 编写spider文件去访问目标网站获取页面链接列表,并解析这些链接的内容以抽取所需的信息片段。这里假设有一个公开可访问且允许自动化请求查询的API接口提供最新的月度报告文档下载地址作为例子展示如何操作: ```python import scrapy from ..items import NewEnergyCarSalesItem class SalesDataSpider(scrapy.Spider): name = "sales_data" custom_settings = { 'ITEM_PIPELINES': {'new_energy_cars_sales.pipelines.NewEnergyCarsSalesPipeline': 300}, } def start_requests(self): urls = [ 'http://example.com/api/monthly_reports', ] for url in urls: yield scrapy.Request(url=url, callback=self.parse) def parse(self, response): json_response = response.json() items = [] for report_url in json_response['report_urls']: item = NewEnergyCarSalesItem() # 进一步处理单个报告URL... item['date'] = ... # 设置发布时间 item['brand_name'] = ... # 设置品牌名称 item['sales_volume'] = ... # 设置销售量 items.append(item) return items ``` 此部分代码仅作为一个概念性的说明,在实际应用时还需要根据具体的目标站点调整逻辑细节[^2]。 #### 存储与分析收集到的数据 一旦完成了上述步骤之后就可以利用Pandas这样的工具来进行后续的数据清洗和预处理工作以便更好地支持进一步的研究活动。例如加载CSV格式保存下来的本地文件进行探索性数据分析(EDA): ```python import pandas as pd df = pd.read_csv('collected_new_energy_car_sales.csv') print(df.head()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值