#高中数学一定会将到一个重要的不等式链:
a
2
+
b
2
2
≥
a
+
b
2
≥
a
b
≥
2
1
a
+
1
b
\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\ge\sqrt{ab}\ge\frac{2}{\frac{1}{a}+\frac{1}{b}}
2a2+b2≥2a+b≥ab≥a1+b12
两两证明起来不难,只需要平方,凑成完全平方公式,但实际上,上面四个结构可以用一个函数表现出来:
f
(
x
)
=
a
1
+
x
+
b
1
+
x
a
x
+
b
x
f(x)=\frac{a^{1+x}+b^{1+x}}{a^x+b^x}
f(x)=ax+bxa1+x+b1+x 其中a、b都是大于0的常数。
也就是上面这个函数可以一下子证明完上面的不等式链。
在此之前,我们需要考虑函数
f
(
x
)
f(x)
f(x)的单调性,我们直接求导试试:
f
′
(
x
)
=
(
a
1
+
x
l
n
a
+
b
1
+
x
l
n
b
)
(
a
x
+
b
x
)
−
(
a
1
+
x
+
b
1
+
x
)
(
a
x
l
n
a
+
b
x
l
n
b
)
)
(
a
x
+
b
x
)
2
f'(x)=\frac{(a^{1+x}lna+b^{1+x}lnb)(a^x+b^x)-(a^{1+x}+b^{1+x})(a^xlna+b^xlnb))}{(a^x+b^x)^2}
f′(x)=(ax+bx)2(a1+xlna+b1+xlnb)(ax+bx)−(a1+x+b1+x)(axlna+bxlnb))
=
a
1
+
x
b
x
l
n
a
−
a
x
b
1
+
x
l
n
a
+
a
x
b
1
+
x
l
n
b
−
a
1
+
x
b
x
l
n
b
(
a
x
+
b
x
)
2
=\frac{a^{1+x}b^xlna-a^xb^{1+x}lna+a^xb^{1+x}lnb-a^{1+x}b^xlnb}{(a^x+b^x)^2}
=(ax+bx)2a1+xbxlna−axb1+xlna+axb1+xlnb−a1+xbxlnb
=
l
n
a
⋅
a
x
b
x
(
a
−
b
)
+
l
n
b
⋅
a
x
b
x
(
b
−
a
)
(
a
x
+
b
x
)
2
=\frac{lna\cdot a^xb^x(a-b)+lnb\cdot a^xb^x(b-a)}{(a^x+b^x)^2}
=(ax+bx)2lna⋅axbx(a−b)+lnb⋅axbx(b−a)
=
a
x
b
x
(
a
−
b
)
(
l
n
a
−
l
n
b
)
(
a
x
+
b
x
)
2
≥
0
=\frac{a^xb^x(a-b)(lna-lnb)}{(a^x+b^x)^2}\ge0
=(ax+bx)2axbx(a−b)(lna−lnb)≥0
显然
f
(
x
)
f(x)
f(x)是一个单增函数。要是还没学导数也可以根据如下判断:
f
(
x
)
=
a
x
+
1
(
1
+
b
a
x
+
1
)
a
x
(
1
+
b
a
x
)
f(x)=\frac{a^{x+1}(1+{\frac{b}{a}}^{x+1})}{a^x(1+{\frac{b}{a}}^x)}
f(x)=ax(1+abx)ax+1(1+abx+1)
令
t
=
b
a
t=\frac{b}{a}
t=ab
f
(
x
)
=
a
(
1
+
t
x
)
1
+
t
x
+
1
=
a
(
t
+
1
−
t
1
+
t
x
)
f(x)=\frac{a(1+t^x)}{1+t^{x+1}}=a(t+\frac{1-t}{1+t^x})
f(x)=1+tx+1a(1+tx)=a(t+1+tx1−t)
当
t
t
t大于1时,
1
−
t
≤
0
1-t\le0
1−t≤0,
1
1
+
t
x
\frac{1}{1+t^x}
1+tx1为减函数,因此
f
(
x
)
f(x)
f(x)为增函数,当
t
≤
1
t\le1
t≤1时类似。
于是有:
f
(
1
)
≥
f
(
0
)
≥
f
(
−
1
2
≥
f
(
−
1
)
f(1)\ge f(0)\ge f(-\frac{1}{2} \ge f(-1)
f(1)≥f(0)≥f(−21≥f(−1) 当且仅当
a
=
b
a=b
a=b时取等号
证毕
证毕
证毕
其中
f
(
1
)
=
a
2
+
b
2
a
+
b
f(1)=\frac{a^2+b^2}{a+b}
f(1)=a+ba2+b2
f
(
0
)
=
a
+
b
2
f(0)=\frac{a+b}{2}
f(0)=2a+b
f
(
−
1
2
)
=
a
+
b
1
a
+
1
b
=
a
b
f(-\frac{1}{2})=\frac{\sqrt{a}+\sqrt{b}}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}}=\sqrt{ab}
f(−21)=a1+b1a+b=ab
f
(
−
1
)
=
2
1
a
+
1
b
f(-1)=\frac{2}{\frac{1}{a}+\frac{1}{b}}
f(−1)=a1+b12