什么是二叉搜索判定树?
一颗二叉树,描述了在有序数组上执行二分查找时所有可能得搜索路径。
列如有序数组arr[5]={4,8,12,23,32},要找到23,二分查找的示意图如下:
mid就是比较次数,成功查找的平均比较次数约为logn(底是2)
代码如下:
int BS(int e,int arr[],int &count,int low,int high){
if(low<=high){
int mid=(low+high)/2;
if(e==arr[mid]) return mid;//找到的话就返回下标
else if(e<arr[mid]){//要找的值比中间值小就更新high的值,再到左边这一半进行二分查找
high=mid-1;
return BS(e,arr,count,low,high);
}
else{
low=mid+1;
return BS(e,arr,count,low,high);
}
}
return -1;//找不到就返回-1
}
要创建二叉搜索判定树,实际上就是模拟二分查找的路径。对与上例数组,其二叉搜索判定树如下:
第一次比较:low=0,high=4,mid=2,arr[2]=12,所以根节点就是12
第二次比较:如果目标元素比12小就在左子树里搜索,此时high=mid-1=1,low=0,mid=0,arr[0]=4,左孩子就是4,每次要找比12小的元素都要先和12比较,再和4比较;每次要找比12大的元素都要先和12比较,再和23比较
以此类推,最多比较三次,就能得到出任何一个值在数组里查找的结果。
根据这个例子,可以看出二叉搜索判定树具有以下性质:
- 对于有n个元素的有序表,判定树的高度为[logn]+1
- 比较的最多次数为[logn]+1
- 对于查找失败的元素,最少比较次数为[logn](找3,先和12比较再和4比较,两次就得出结果)
BSDT其实就是在BST(二叉搜索树)的基础上,更加靠近完全二叉树的树型,不会像BST那样会退化成链状结构,所以效率更高。
二叉树创建的关键代码如下,主要思想还是递归函数:
void CreatBST(BT &T,int arr[],int low,int high){
if(low>high){
T=NULL;
return;
}
int mid=(low+high)/2;
T=(BT)malloc(sizeof(BiTree));
T->data=arr[mid];
CreatBST(T->lchild,arr,low,mid-1);
CreatBST(T->rchild,arr,mid+1,high);
}
传值调用low和high,一旦low>high就结束,否则将arr[mid]作为数的新结点,通过递归将数组创建结点的左子树(high的值以mid-1传入)和右子树 (low的值以mid+1传入),这样就实现了BSDT的创建。
下面是完整代码:
#include <bits/stdc++.h>
#define max 10010
using namespace std;
typedef struct BiTree{
int data;
BiTree *rchild;
BiTree *lchild;
}BiTree,*BT;
void CreatBST(BT &T,int arr[],int low,int high){
if(low>high){
T=NULL;
return;
}
int mid=(low+high)/2;
T=(BT)malloc(sizeof(BiTree));
T->data=arr[mid];
CreatBST(T->lchild,arr,low,mid-1);
CreatBST(T->rchild,arr,mid+1,high);
}
void PreOrder(BT T){
if(T){//先序遍历
cout<<T->data<<" ";
PreOrder(T->lchild);
PreOrder(T->rchild);
}
}
int main(){
int n;
cin>>n;
int arr[max]={0};
for(int i=0;i<n;i++){
cin>>arr[i];
}
sort(arr,arr+n);
n=unique(arr,arr+n)-arr;//删除重复元素后的元素个数
cout<<n<<"\n";
BT T;
CreatBST(T,arr,0,n-1);
PreOrder(T);
return 0;
}
在主函数里面要先实现从小到大排序并且删除重复元素。
先序遍历输出的结果如下:
这次代码也是比较简洁的,主要还是递归的思想,不难理解。
如果够小伙伴发现有什么问题或者想法欢迎在评论区提出来!下次更新BST的删除算法。(其实本人的代码在oj上还没有通过orz,不知道为啥通过不了)