rnn与gru, lstm, bi-lstm代码差异

博客详细对比了rnn、gru、lstm和bi-lstm的区别,主要集中在网络接口、前向传播过程和网络结构上。rnn与gru接口相同,只需更换名字;rnn与lstm接口一致,但lstm涉及cell_state;lstm到bi-lstm的变化在于设置bidirectional=True,同时调整隐藏层初始化和输出处理。
摘要由CSDN通过智能技术生成
rnn 与gru区别

两者网络接口相同,只需要在网络定义里替换一下相互名字即可

self.gru = nn.GRU(input_size, hidden_size, num_layers, batch_first=True)
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)

其它输入数据和输出接口保持不变

rnn与lstm区别

rnn与lstm网络接口定义一样,只是换接口名称,但是lstm前向增加了cell_state的初始化和输出
网络结构

self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)
前向传播

x (batch_size, time_step, feature_size)

  • rnn
    def forward(self, x):  
        #Forward loop
        #x.shape=(batch_size, time_step, input_size)
        #h.shape=(num_layers, batch_size,hidden_size)
        #out.shape=(batch_size, time_step, hidden_size)
        h0 = torch.zeros(self.num_l
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值