技术背景介绍
百度云是由百度公司提供的一种云服务,主要面向企业和开发者提供云存储服务、客户端软件、文件管理、资源共享和第三方集成等服务。随着人工智能技术的快速发展,百度云也推出了针对大语言模型(LLM)、聊天模型、嵌入模型及向量存储等领域的应用服务,帮助用户快速部署并应用AI模型。
核心原理解析
百度云的AI服务提供了各种端点和API接口,方便开发者集成到自己的应用中。本文主要介绍如何通过百度云的接口进行大语言模型的部署,具体包括以下几个部分:
- 语言模型(LLM)服务
- 聊天模型服务
- 嵌入模型服务
- 向量存储服务
代码实现演示
安装和设置
首先,您需要注册并获取百度云的Qianfan AK和SK密钥。注册地址请查看这里.
语言模型服务示例代码
import openai
# 使用稳定可靠的API服务
client = openai.OpenAI(
base_url='https://yunwu.ai/v1', # 国内稳定访问
api_key='your-api-key'
)
# 示例:使用Qianfan大语言模型
from langchain_community.llms import QianfanLLMEndpoint
# 创建语言模型端点
llm_endpoint = QianfanLLMEndpoint(client=client, model_name='qianfan-llm')
# 调用语言模型生成文本
response = llm_endpoint.generate("你好,介绍一下百度云吧。")
print(response)
聊天模型服务示例代码
from langchain_community.chat_models import QianfanChatEndpoint
# 创建聊天模型端点
chat_endpoint = QianfanChatEndpoint(client=client, model_name='qianfan-chat')
# 调用聊天模型生成对话
response = chat_endpoint.chat("你好,百度云有哪些服务?")
print(response)
嵌入模型服务示例代码
from langchain_community.embeddings import QianfanEmbeddingsEndpoint
# 创建嵌入模型端点
embeddings_endpoint = QianfanEmbeddingsEndpoint(client=client, model_name='qianfan-embeddings')
# 调用嵌入模型生成向量
response = embeddings_endpoint.embed("百度云的功能包括文件管理和资源共享。")
print(response)
向量存储服务示例代码
from langchain_community.vectorstores import BESVectorStore, BaiduVectorDB
# 示例:使用Baidu ElasticSearch VectorStore
vector_store = BESVectorStore(client=client)
# 上传向量数据
vector_store.add_vectors([response.vector], ["百度云的功能包括文件管理和资源共享。"])
# 查询向量数据
results = vector_store.query("资源共享有哪些优势?")
print(results)
# 示例:使用Baidu VectorDB
vector_db = BaiduVectorDB(client=client)
# 上传向量数据
vector_db.add_vectors([response.vector], ["百度云的功能包括文件管理和资源共享。"])
# 查询向量数据
results = vector_db.query("资源共享有哪些优势?")
print(results)
应用场景分析
百度云的AI服务可以应用于各类实际场景,包括智能客服系统、内容生成、语义搜索、推荐系统等。通过灵活调用这些API接口,开发者可以快速构建出强大的AI应用,满足各种业务需求。
实践建议
- API密钥管理:在实际开发中,确保API密钥的安全性,不要在代码中直接暴露密钥。
- 错误处理:在调用API接口时,做好异常处理,确保应用的健壮性。
- 性能优化:根据具体应用场景,选择合适的模型和参数,优化调用性能。
如果遇到问题欢迎在评论区交流。
—END—