Spring Cloud Gateway实现API限流的三种方式
前言
在微服务架构中,API网关作为系统的统一入口,承担着路由转发、权限校验、流量控制等重要职责。其中,API限流是保障系统稳定性的重要手段之一,能够有效防止系统因突发流量而过载。Spring Cloud Gateway作为Spring Cloud生态中的网关组件,提供了多种灵活的限流实现方式。本文将详细介绍三种常用的API限流实现方案,并分析其适用场景。
一、基于Redis的令牌桶算法限流
Spring Cloud Gateway内置了基于Redis的限流过滤器RequestRateLimiter
,它采用令牌桶算法实现分布式限流,适合多实例网关场景。
实现步骤
- 添加依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>
- 配置限流规则
spring:
redis:
host: localhost
port: 6379
cloud:
gateway:
routes:
- id: order-service
uri: lb://order-service
predicates:
- Path=/api/orders/**
filters:
- name: RequestRateLimiter
args:
redis-rate-limiter.replenishRate: 50 # 每秒生成50个令牌
redis-rate-limiter.burstCapacity: 100 # 令牌桶最大容量
key-resolver: "#{@ipKeyResolver}" # 使用IP作为限流键
- 自定义限流键解析器
@Bean
public KeyResolver ipKeyResolver() {
return exchange -> Mono.just(
exchange.getRequest().getRemoteAddress().getAddress().getHostAddress()
);
}
- 自定义限流响应
@Configuration
public class RateLimitConfig {
@Bean
public RedisRateLimiter redisRateLimiter(ReactiveRedisTemplate<String, String> redisTemplate) {
return new RedisRateLimiter(redisTemplate,
(config, routeId) -> new RateLimiterConfig.Builder()
.setReplenishRate(config.getReplenishRate())
.setBurstCapacity(config.getBurstCapacity())
.build());
}
}
优缺点分析
优点:
- 分布式环境下限流准确,适合集群部署
- 令牌桶算法能应对突发流量
- 配置简单,与Spring Cloud Gateway深度集成
- 支持动态调整限流参数
缺点:
- 依赖Redis,增加了系统复杂度
- 网络IO带来额外性能开销
- 需要维护Redis高可用
二、基于Guava的本地限流
对于单实例网关或不需要严格分布式限流的场景,可以使用Guava的RateLimiter实现高性能本地限流。
实现步骤
- 添加依赖
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>31.1-jre</version>
</dependency>
- 实现自定义过滤器
@Component
@Order(Ordered.HIGHEST_PRECEDENCE)
public class RateLimitFilter implements GlobalFilter {
// 针对不同路由设置不同限流策略
private final Map<String, RateLimiter> limiters = Map.of(
"user-service", RateLimiter.create(20.0), // 每秒20个请求
"order-service", RateLimiter.create(50.0) // 每秒50个请求
);
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
String routeId = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_PREDICATE_ROUTE_ATTR);
RateLimiter limiter = limiters.get(routeId);
if (limiter != null && !limiter.tryAcquire()) {
exchange.getResponse().setStatusCode(HttpStatus.TOO_MANY_REQUESTS);
exchange.getResponse().getHeaders().add("Content-Type", "application/json");
String error = "{\"code\":429,\"message\":\"请求过于频繁,请稍后再试\"}";
DataBuffer buffer = exchange.getResponse().bufferFactory().wrap(error.getBytes());
return exchange.getResponse().writeWith(Mono.just(buffer));
}
return chain.filter(exchange);
}
}
优缺点分析
优点:
- 不依赖外部存储,性能极高
- 实现简单,维护成本低
- 适合单实例或对限流精度要求不高的场景
缺点:
- 分布式环境下限流不准确
- 限流规则无法动态调整
- 不支持复杂限流策略
三、基于Sentinel的熔断限流
Sentinel是阿里巴巴开源的流量控制组件,提供了丰富的限流、熔断、系统保护功能,适合复杂场景。
完整实现方案
- 添加依赖
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
<version>2021.0.4.0</version>
</dependency>
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-alibaba-sentinel-gateway</artifactId>
<version>2021.0.4.0</version>
</dependency>
- 详细配置
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8080 # Sentinel控制台地址
port: 8719
filter:
enabled: false # 关闭默认的Servlet过滤器
gateway:
enabled: true
order: -100 # 过滤器执行顺序
- 自定义流控规则
@PostConstruct
public void initRules() {
// API分组限流
initApiGroupRules();
// 热点参数限流
initParamFlowRules();
}
private void initApiGroupRules() {
Set<ApiDefinition> definitions = new HashSet<>();
ApiDefinition userApi = new ApiDefinition("user-api")
.setPredicateItems(new HashSet<>(Arrays.asList(
new ApiPathPredicateItem().setPattern("/api/user/**")
.setMatchStrategy(SentinelGatewayConstants.URL_MATCH_STRATEGY_PREFIX)
)));
definitions.add(userApi);
GatewayApiDefinitionManager.loadApiDefinitions(definitions);
Set<GatewayFlowRule> rules = new HashSet<>();
rules.add(new GatewayFlowRule("user-api")
.setResourceMode(SentinelGatewayConstants.RESOURCE_MODE_CUSTOM_API_NAME)
.setCount(100)
.setIntervalSec(1)
.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER)
.setMaxQueueingTimeoutMs(500));
GatewayRuleManager.loadRules(rules);
}
private void initParamFlowRules() {
ParamFlowRule rule = new ParamFlowRule("user-service")
.setParamIdx(0)
.setCount(10)
.setGrade(RuleConstant.FLOW_GRADE_QPS);
ParamFlowRuleManager.loadRules(Collections.singletonList(rule));
}
- 高级定制
@Configuration
public class SentinelConfig {
// 自定义异常处理
@Bean
@Order(Ordered.HIGHEST_PRECEDENCE)
public SentinelGatewayBlockExceptionHandler sentinelGatewayBlockExceptionHandler(
ObjectProvider<List<ViewResolver>> viewResolversProvider,
ObjectProvider<ServerCodecConfigurer> serverCodecConfigurer) {
return new CustomBlockExceptionHandler(
viewResolversProvider.getIfAvailable(Collections::emptyList),
serverCodecConfigurer.getIfAvailable(ServerCodecConfigurer::create));
}
// 自定义请求解析器
@Bean
public RequestOriginParser requestOriginParser() {
return exchange -> {
String origin = exchange.getRequest().getHeaders().getFirst("X-Origin");
return Optional.ofNullable(origin).orElse("default");
};
}
}
// 自定义异常响应
class CustomBlockExceptionHandler extends SentinelGatewayBlockExceptionHandler {
public CustomBlockExceptionHandler(List<ViewResolver> viewResolvers,
ServerCodecConfigurer serverCodecConfigurer) {
super(viewResolvers, serverCodecConfigurer);
}
@Override
public Mono<Void> handle(ServerWebExchange exchange, Throwable ex) {
if (ex instanceof BlockException) {
exchange.getResponse().getHeaders().add("Content-Type", "application/json");
String error = String.format("{\"code\":429,\"message\":\"服务限流,%s\"}",
((BlockException) ex).getRule().getResource());
DataBuffer buffer = exchange.getResponse().bufferFactory().wrap(error.getBytes());
return exchange.getResponse().writeWith(Mono.just(buffer));
}
return Mono.error(ex);
}
}
优缺点分析
优点:
- 功能全面:支持限流、熔断、系统保护
- 可视化控制台:实时监控和动态规则配置
- 多种限流策略:QPS、线程数、热点参数等
- 生产级解决方案:经过阿里大规模流量验证
缺点:
- 系统复杂度高,学习曲线陡峭
- 需要额外部署Sentinel控制台
- 对系统性能有一定影响
总结与选型建议
方案 | 适用场景 | 性能 | 分布式支持 | 功能丰富度 |
---|---|---|---|---|
Redis限流 | 多实例网关,需要精确限流 | 中 | 支持 | 中 |
Guava限流 | 单实例网关,简单限流需求 | 高 | 不支持 | 低 |
Sentinel限流 | 复杂流量管控,生产环境 | 中高 | 支持 | 高 |
实际应用建议:
- 中小型项目:优先考虑Redis方案,平衡实现复杂度和功能需求
- 高并发单实例:使用Guava方案获得最佳性能
- 生产级系统:采用Sentinel实现全方位流量管控
- 混合方案:核心API使用Sentinel,普通API使用Redis或Guava
最佳实践:
- 结合监控系统实时调整限流阈值
- 为不同用户等级设置差异化限流策略
- 在网关层实现全局兜底限流,在服务层实现细粒度限流
- 完善的限流响应信息,帮助客户端正确处理