xgboost 详细理解

XGBoost
1、目标函数:
加法模型-基学习器
在这里插入图片描述
训练方式:前向分布算法

加法模型:
目标函数:t个基学习器,基学习器即指回归树

在这里插入图片描述

树的复杂度Ω为每个树的叶子节点数与叶子结点的权重w决定,注意此时的w就是leaf score,所以目标函数的正则项可以定义为:在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
树太深容易过你和,需要增加惩罚项, T: 叶子节点个数,

精确贪心算法:
增益: gain, 分裂前的损失值-分裂后的损失值,越大越好。
gain=obj1-obj2, obj1: 分裂前的损失值,也即目标值,obj2,分裂后的目标值
在这里插入图片描述
停止分裂的条件:
1、max gain<=0
2、当叶子节点包含样本个数<=1
3、限制层级,叶子节点的个数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值