XGBoost
1、目标函数:
加法模型-基学习器
训练方式:前向分布算法
加法模型:
目标函数:t个基学习器,基学习器即指回归树
树的复杂度Ω为每个树的叶子节点数与叶子结点的权重w决定,注意此时的w就是leaf score,所以目标函数的正则项可以定义为:
树太深容易过你和,需要增加惩罚项, T: 叶子节点个数,
精确贪心算法:
增益: gain, 分裂前的损失值-分裂后的损失值,越大越好。
gain=obj1-obj2, obj1: 分裂前的损失值,也即目标值,obj2,分裂后的目标值
停止分裂的条件:
1、max gain<=0
2、当叶子节点包含样本个数<=1
3、限制层级,叶子节点的个数