NBT | 微生物研究所王军组在AI赋能挖掘微生物组功能多肽方面获得新进展

抗生素耐药是现代医学面临的严峻挑战之一,在近几十年来,产生抗生素耐药性的病原微生物持续增加,每年在全球范围内耐药菌引发感染造成的死亡人数达到70万人。抗菌肽(AMPs)作为解决抗生素耐药性的候选方案之一,具有不易产生抗药性、作用快速等优势,同时因为容易降解也不会对环境造成持续性污染。因此,开发出能够应对抗多重耐药菌的新药物,缓解耐药问题迫在眉睫;但传统方法筛选新药的候选分子成功率较低,亟需高通量的挖掘和筛选手段。 

  抗菌肽是一类具有抗微生物活性的小肽,其作用范围包括细菌、真菌、病毒和寄生虫。抗菌肽可以通过多种作用机制达到抑制病原微生物的效果,其中较为普遍的作用机制是结合病原微生物的细胞膜,扰乱细胞膜结构;或直接在细胞膜上形成微孔使细胞内容物外流,最终将病原微生物杀死。近些年来,能抵御多重耐药菌同时不易产生耐药性的抗菌肽,已被认为是替代传统抗生素的下一代抗菌剂,如果能在大量的微生物和微生物组中高效、高通量挖掘,将非常有益于临床应对耐药菌的治疗。 

  2022年3月3日,中国科学院微生物研究所在国际重要期刊《自然-生物技术》(Nature Biotechnology)上发表了题为“Identification of antimicrobial peptides from the human gut microbiome using deep learning”的研究性文章。该文章采用自然语言学习(NLP)的多种神经网络方法,实现了抗菌肽挖掘模型的构建和优化;通过该预测模型在大规模微生物组(1万余样本)中的应用,总计挖掘并合成了216种潜在的新型抗菌肽。经实验验证,其中181种新型抗菌肽具有抗菌活性(占83.8%)。进一步的实验表明抗菌肽对多重耐药革兰氏阴性菌具有较强的抑菌能力,同时在动物感染模型中验证部分抗菌肽具有非常好的体内活性和安全性(图1)。 

20f9cae6889123531bb2a93d7d85c361.png

  图1. 研究流程示意图。收集抗菌肽序列用于构建优化预测模型(左图);微生物组中挖掘潜在的抗菌肽序列,通过网络分析进一步过滤假阳性序列,将最终得到的新型抗菌肽进行化学合成和初步实验验证(中间部分);将效果最优的肽进行后续研究,包括针对多重耐药菌的药效测试在内的多项研究(右图)

  该研究结合了微生物组大数据和最新的深度学习模型,提供了人工智能赋能大分子挖掘和转化的良好范例;同时,也表明微生物组数据中存在着大量待开发资源,通过计算方法可以将具有生物活性的分子快速高通量的发掘出来。其次,该研究还扩大了人工智能在生物医学领域的应用范围,先前研究中主要集中在医学图像处理、小分子药物筛选等领域,增加了人工智能的应用场景。考虑到未来随着测序数据的累积,更多的微生物大数据将被获得。同时,不论是小分子药物还是肽的搜索空间仍处于早期探索阶段,对于挖掘多功能分子(治疗感染、代谢和免疫疾病),具有非常大的发展潜力。 

  中国科学院微生物研究所王军课题组马越,夏彬彬,陈义华课题组郭正彦,张雨薇为本文的共同第一作者。王军研究员和陈义华研究员为共同通讯作者。本研究受到了中科院战略先导项目“病原体宿主适应与免疫干预”、科技部重点研发、国家自然科学基金委杰出青年基金项目(陈义华)、面上项目和“糖脂代谢的时空网络调控”重大研究计划培育项目,以及北京市科技新星项目的支持。 

  论文链接:https://www.nature.com/articles/s41587-022-01226-0

往期精品(点击图片直达文字对应教程)

10ce43bea94312b622af809ba73551f7.png

b3c0247cfb453f179040b2279603cd1e.png

28b6b488188cf12e8b6e2cd819e1c8c6.png

5abd346f47ab920a62c6895bb20f7b0c.png

1979e574cf2df72328b6a095aa2c3923.png

13db327c06099627e68403448112cfd5.png

4fb5460067bde2d71ab942ffd5fc70c3.png

b35f62f79d8b4a1e7947bfebe15771ca.png

2f2fe1c90df1f32b32f5dbd3e8f7410a.png

9301a15332ddf2e1c6db01007c2b8169.png

c2de6215033e77580364e8d4c59c75a2.png

03ef3667ec774b5e236fbf65cd000f1d.png

e09bec771db332c7a712d6a4d00757da.png

a4f2ba0ae6a61d1460e0a7e634d34f1a.png

9d571654adbc4c40e37887af79dda3ec.png

f34319a9d6055044424d7fe52d008a59.png

fdc704b517513f5f2ed6d127f60f8ea0.png

96b24dfe960eefa7e4e5096a5c0dd4e6.png

043796e720c2bdfe655a1367c1d1d4dd.png

ca3550163cc08a3f3efe64856e0ccd5b.png

7fe19ea79ef9a51ae3d829af2adecaf7.png

c03e92c297c6faabace7a2bb7a62f162.png

d2f069aceb6409b8c9a4c2e6abce3c54.png

a115db1bb9c18a89471143b0fc2c8959.png

4692523a858554e0fbf6640446ab4c1e.png

ead13a7d8e2aacd0c26f4eb3dbdbd7b8.png

3379c33b887b0ac360f48a63058666d5.png

aa5f6b57c6bb59b7e6b13f4494fa0ac6.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

5c7d5875d4b951bb11f31032dffa8a0a.png

76207a7f30cbc25367087045e3b5794b.png

0cef93162556d60cf5a254d058a44385.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值