Nat Commun | 李炜/费腾团队合作提出基于机器学习方法的CRISPR-Cas13d编辑效率及脱靶效应分析工具...

文章介绍了一种名为DeepCas13的深度学习模型,该模型用于预测CRISPR-Cas13d的编辑效率,同时考虑了sgRNA的RNA二级结构。通过大规模筛选实验和后续验证,DeepCas13在编辑效率预测和减少脱靶效应方面表现出优越性能,特别是在蛋白质编码基因和非编码RNA上。此外,研究发现sgRNA的编辑效率与其脱靶效应密切相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Cas13属于第二大类VI型 CRISPR-Cas系统,是一个高效且高特异性靶向单链RNA及加工自身前体crRNA(pre-crRNA)的蛋白家族,目前已知的包括Cas13a、Cas13b、Cas13d (RfxCas13d, or CasRx)、Cas13x和Cas13y。Cas13酶具有两个高级真核生物和原核生物核苷酸结合(HEPN)内切酶结构域,一旦被与单向导 RNA(sgRNA)相互补的单链RNA序列激活,Cas13蛋白将切割与自身结合的目标 RNA并附带切割周围遇到的单链RNA(Collateral Cleavage)。目前Cas13已经应用于RNA敲除(例如通过敲除与代谢调节相关的基因转录本而达到研究或治疗糖尿病的目的)、调控表观转录组(如N6-methyladenosine m6A修饰)、核酸检测与疾病诊断(如COVID-19病毒检测)等领域。

CRISPR-Cas系统(包括Cas13)应用的一个主要挑战是设计具有高靶向效率和特异性的sgRNA。一方面,对 sgRNA 效率的准确预测将有助于优化 sgRNA文库的设计,从而使编辑效率最大化(即高灵敏度),另一方面,深入了解 Cas 核酸酶的特异性将有助于避免潜在的脱靶效应,包括 DNA(对于 Cas9)或 RNA(对于 Cas13)水平上的脱靶切割、Cas13对附近的 mRNA产生的附带切割等。对此,通过CRISPR筛选实验,利用机器学习算法来挖掘sgRNA特征与编辑效率的对应关系,建立特定条件下的CRISPR系统性能预测模型,是目前效益较高的方法,广泛应用于Cas9系统。然而,现有针对Cas13d的预测方法存在一定的局限性:首先,其训练数据集基于测量一些特定基因表达水平的 FACS 分选筛选,尚不清楚相应模型是否适用于针对其他基因和测量其他表型(例如细胞增殖)的sgRNA;其次,尚不清楚这种在靶向蛋白质编码RNA的sgRNA上训练的模型是否适用于非编码 RNA;此外,缺乏系统的实验验证来评估现有模型的性能;最后,对Cas13d 的脱靶效应缺乏充分探索。

2023年2月10日,Nature Communications杂志在线发表了由美国华盛顿特区的儿童国家医学中心和乔治华盛顿大学李炜课题组和东北大学费腾课题组合作的文章,Modeling CRISPR-Cas13d on-target and off-target effects using machine learning approaches(儿童国家医学中心程孝龙和东北大学李泽旭为共同第一作者),基于机器学习方法的 CRISPR-Cas13d 编辑效率及脱靶效应建模方法

5cb61f5e777eeaf324422c86404ba55b.png

文章首先设计了靶向必需/非必需基因及长非编码RNA (lncRNA) 的10,830个sgRNA,然后在A375细胞系中进行细胞增殖筛选实验,并将此数据与已发表的数据相结合,从而获得了包含22,599个Cas13d sgRNA数据集,以系统地研究 Cas13d 的编辑效率和特异性。在此基础上,作者设计了一种基于深度学习的模型DeepCas13,用于预测CRISPR-Cas13d 的靶向效率。与现有仅提取序列空间特征的 CRISPR-Cas9 编辑效率预测工具不同,DeepCas13进一步考虑sgRNA的RNA二级结构,这是影响RNA敲低效率的重要因素。DeepCas13 利用卷积神经网络和递归神经网络分别从sgRNA的碱基序列和RNA二级结构中提供时空特征,然后将特征整合并最终通过全连接神经网络进行预测。与传统的机器学习方法及最新发表的工具相比,DeepCas13 在 Cas13d sgRNA编辑效率预测中表现出更好的性能。此外,DeepCas13 在蛋白质编码基因和非编码 RNA(包括环状 RNA 和长链非编码 RNA)上均表现良好。文章还通过二次大规模筛选以及qRT-PCR实验进一步验证了DeepCas13性能优于已有模型。

bea5e75474489d8d7bdb368bd6937808.png

文章还利用细胞增殖筛选试验中靶向非必需基因的sgRNA,使用随机森林算法系统地评估了Cas13d的脱靶效应。发现决定sgRNA的脱靶能力的特征与影响编辑效率的关键特征非常相似,这意味着sgRNA的脱靶效应与其编辑效率是密切相关的,而非独立存在。这种影响可以在Cas13d筛选中使用以靶向非必需基因的sgRNA作为阴性对照来减轻。文章研究表明,与使用非靶向sgRNA作为阴性对照相比,以靶向非必需基因的sgRNA作为阴性对照将大大减少筛选中的假阳性,这一发现类似于在 CRISPR/Cas9 筛选中推荐使用以靶向非必需基因的sgRNA作为阴性对照类似。文章最后将编辑效率模型和脱靶效应模型应用于234个靶向lncRNA的sgRNAs,识别了针对特定细胞系的lncRNA,并分析确定了已知和推定的致癌lncRNA。

总结来说,文章利用大规模筛选数据集设计了基于深度学习的预测模型DeepCas13,通过二次筛选及qRT-PCR实验,验证了DeepCas13性能优于现有方法。建立了基于随机森林算法的脱靶模型,证实了sgRNA的编辑效率与脱靶效应紧密联系,而非相互独立。分析Cas13d敲低lncRNA表达水平的性能,分析已知和推定的致癌lncRNA,确定以靶向非必需基因的sgRNA作为阴性对照将达到最佳性能平衡。DeepCas13还提供免费的在线预测服务,网址为 http://deepcas13.weililab.org/。

原文链接:

https://www.nature.com/articles/s41467-023-36316-3

制版人:十一

往期精品(点击图片直达文字对应教程)

89b2a95c769e88802b4ad79ec930ac12.jpeg

db64389d17dd66752b71a888100b3c0c.jpeg

e63945f03342610828a130c80d50ebf9.jpeg

e7b886c283a433c855e4bb42aa57396c.jpeg

bd9afe29da7411f14f6a4c018a4b33b6.jpeg

b539afe96c30534eca7fd1e606632458.jpeg

7bead03bd04800038abff89813f570c7.jpeg

bfc9505a16ebec9213c036de3cf0d99a.jpeg

9a667b29053fdbaf240fab3e430d4be5.jpeg

5741b885a5f1ed38dc629c53f528dedb.jpeg

046e29652fe24a9bfcd3ec0e5ccb7a6b.jpeg

dca9eddddacd0a67131b1e53dedc6864.jpeg

0bc50d8010e802921810c888f9ba6b49.png

84a9bd2c89b40bf68d2a4cd756283da1.png

21ede768c4c4ecf122d61b3f9ba9fe16.png

e5f06b78471531501234b8ca8a203719.png

ac813c0921cb396b0ebc0966529af78d.jpeg

1df6d7998b64a1b600f68e7921910744.jpeg

1512eb67ed8d177d769c9e29edab1bf2.jpeg

8b3de5db5727588c40c4de9472086b6d.jpeg

05f7796b890e00416f4f1408ffaf29e8.png

0e1405accbb599885dd55893f84f5256.png

4f5e9ad63b8015f8a7cac110001d934d.jpeg

3effca77b557a3f60f188108c496b020.png

c4accb7399a58b01c74e8ed78fc904ad.png

675ab5b616fbf18514e7fafd533aa74b.jpeg

3f3e58454f4f39e5d9d244abd95e5bc0.png

09b04ee397a880f748bcf43c85f546cb.png

机器学习

后台回复“生信宝典福利第一波”或点击阅读原文获取教程合集

2ea29b15b1ab1a06e2352645e0e864b7.jpeg

128871d52d65bac38e539d8b88882270.jpeg

de7e7a6b189bc585dcfa2fe9a939b688.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值