Science子刊 | 中医研究重大突破!中美科学家首次用现代科学解释中药治疗系统原理...

近日,南京信息工程大学智慧医疗研究院徐军教授团队成员甘晓博士和北京交通大学周雪忠教授、美国东北大学Albert-László Barabási教授,以及中国中医科学院和湖北省中医院等联合团队在Science子刊Science Advances上发表了题为 “Network medicine framework reveals generic herb-symptom effectiveness of traditional Chinese medicine”的研究论文。

该论文发现中药“辨证论治”的传统治疗原则可以通过中药与疾病症状在蛋白质网络上的拓扑邻近关系解释,并通过真实世界临床数据验证,首次探索建立了解释中药治疗系统原理的科学理论。

f91934ad71fb71605d1267defd7fa4c6.png

6c374ed9e3b36fa5d925dfe5b0150991.png

研究背景

中医药是我国独具优势与特色的传统医学体系,具有显著的临床疗效,科学阐释中药治疗规律是中药现代化的迫切需求和国家“十四五”规划的优先发展领域。辨证论治作为中医临床主体诊疗方法,是基于中医四诊及症状体征的中医特色个体化诊疗体系,涉及药物、疾病和人体等复杂系统规律。因此,“说明白、讲清楚中医药的临床疗效”仍是未解难题。

作为辨证论治的重要环节,承载随症加减普遍性规律的中药-症状(药症关系)临床疗效的机制有待阐释是关乎中医临床疗效与中药药理研究的关键科学问题。近年来,借助逐渐完整的人类蛋白质相互作用网络,新兴的西药网络医学理论与方法揭示了西药靶标和疾病关联蛋白在人类蛋白质网络上具备普遍性拓扑邻近关系。

1fe50ab6c5155afae71a1f36b6c8eb5b.png

研究结果

fff1259722e52e33f908479960778dcf.png

甘晓博士在此论文中提出了中药的网络医学理论与方法,认为中医临床辨证论治的中的“对症下药”,可以由完整人类蛋白质网络上的中药靶标和症状关联蛋白模块的拓扑邻近关系解释。(图1)

59b5add37a966c9638eb234c9102181a.png

图1– 中药网络医学理论将中医治疗原则解释为中药-症状在蛋白质网络上的拓扑关系:(a)症状关联蛋白的网络模块化;(b)中药-症状的网络邻近关系可以预示疗效

论文首先提出并验证了症状关联基因在人类蛋白质网络上形成显著的集聚模块,并且症状集聚模块间的网络距离越接近,症状越容易共现(图2)。

8d7aa9207631c4844d29423b6f7be2d6.png

图2– 症状的关联蛋白形成本地化的网络模块,且模块间的网络距离可以预示症状共现

然后,论文指出具有疗效的中药-症状存在普遍性的网络邻近关系,即中药靶标在蛋白质网络上邻近症状关联蛋白时更易有疗效,同时提出了多种网络邻近度指标作为数学模型,量化地描述这一邻近关系, 并成功通过《中国药典》中记载的有效中药-症状数据验证了这一结论。(图3)

1bb36f0085aacddb38a9eaccb1d6236f.png

图3– 中药-症状的网络邻近关系可以预示疗效。(A)药-症网络邻近关系示意;(B)设计了八种指标描述网络邻近关系;(C)(D)《中国药典》记载有效的中药-症状更加网络邻近,AUC=0.65-0.72。(E)示例:银柴胡和黄柏的靶标与发热症状网络邻近,因此用于治疗发热;川乌与发热症状不邻近,与腹痛邻近,因此用于治疗腹痛

随后,论文通过真实世界的医院临床患者数据,系统验证了中药-症状临床疗效的网络邻近规律(图4)。最后,论文指出人类蛋白质网络上的网络邻近关系可以作为中药疗效预测、药物重定向的指标,并预测了一系列《中国药典》未记载,但在临床数据中显著有效的药-症组合,作为有开发潜力的中药治疗方案。

0454ec4c6b2f2319f08cea356df3194e.png

图4– 真实世界中的医院患者数据验证了中药的网络医学理论。(A)症状相对风与症状模块的网络距离负相关;(B)医生在临床处方中开具的中药和症状更加邻近;(C)&(D)临床有效的中药和症状更加邻近

意义与展望

这一工作是原创科学理论,首次从复杂网络与系统角度提出中药治疗原理的现代科学解释,并结合真实世界临床数据进行了有效性验证。这一理论对推进中药现代化、国际化具有突破性意义。同时,此研究建立了新的中药原理研究范式,指明完整的人类蛋白质网络可能是中药药理研究的下一个热点方向。

最后,论文提出的中药网络医学理论可能转化为新中药/药用化合物的疗效预测、药物重定向等应用。

该论文第一作者为南京信息工程大学甘晓博士。甘晓博士、北京交通大学周雪忠教授和美国东北大学Albert-László Barabási教授为共同通讯作者。

9b7cc709e02ccc358f00533ab4b39351.png

作者简介

0fe3922555d9815eddd21f6b033b9840.jpeg

甘晓,南京信息工程大学人工智能学院讲师,智慧医疗研究院徐军教授团队成员。主要研究方向为生物医药系统中的复杂网络与其数学建模理论。

5513738ce5b7458af20ea7f00dc03631.jpeg

周雪忠,北京交通大学计算机学院教授,博士生导师,长期从事中医人工智能、数据挖掘与网络医学研究。承担国家科技重大专项、国家重点研发计划项目等国家级项目10余项。获国家科技进步二等奖1项,省部级奖励10余项。

8529b80d596c2adac654e2be315f6db3.jpeg

Albert-László Barabási教授是欧洲艺术与科学院院士,网络科学学会的创始人及会长。Barabási教授研究复杂网络,研究领域极为广泛,从无标度网络、网络控制理论,到前沿的脑网络、网络医学、食物科学、科学学和成功科学,总引用数超过280,000(Google scholar)。

本文由论文作者团队特邀供稿,文中观点仅为作者团队观点,不代表Science/AAAS立场。

往期精品(点击图片直达文字对应教程)

83639da6f226f911cce1642a832dee47.jpeg

644e2ef78fbb849b64a3307b740b0dfd.jpeg

9233e786c2fca82b65409a4e16e897a1.jpeg

650fd7c37bfcbdea479442c63d9b2c37.jpeg

78181e0da1e9d6ce75ac0d3faf49f8d1.jpeg

17485f939665296f8b92a9e323cd2907.jpeg

0e93e0c9fddaa37667620c35e05a6f26.jpeg

ea8ccd2c06ee1fc942451ff85878017e.jpeg

067245de377cefa827942ecfe30136d9.jpeg

1f674fc2ac66595b55898d2e5751bbcd.jpeg

52b07e003e206f184f057affb00742c9.jpeg

7679588aab4ccf10460f7fc1dbe83e65.jpeg

de382625389d3296138ce762cfd12e84.png

eb223ab9047fee74c8a19686fd40c384.png

4cbababb5fa0f205ba057f455dce972c.png

178b96b7798bc44172714808a12047cc.png

cc2eccb5a91b6206948669323df98a63.jpeg

7837b716047bf28e5e3ff6bac71630c4.jpeg

0184e318e4cd4a0b10e924ce066aeeeb.jpeg

b0d1ad39c0e194d3482c1402933d44bd.jpeg

af0604f28451a0ff92e2235d4aba43e2.png

e7fecc12d6fa7c7500b5c8bcb0ebccc4.png

5fdf8f412fc35661c972abc8e456a8c1.jpeg

de561851e80706e9a51ef11d93d92af0.png

29b1334b66a6015975cac0a9ff182d9e.png

e5e38a99f1d16feeec2032b1567b5de7.jpeg

fa451f6c6db07bfdfe5bf50ad0feefbb.png

71a0e06cf61e73d1807f0237fa069181.png

机器学习

704940588a67ac4a0efe916059059c9e.png

e6b9b2ba7e0d152a4fe4e2187f3427db.jpeg

522aa259a6a3abda0e3b2d1a27d724c6.jpeg

07fe321a3532d3c5183a5fec4e9ca51d.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值