iMeta | 华北理工宋小明组开发植物激素相关基因数据库PHGD

点击蓝字 关注我们

PHGD:一个综合且用户友好的植物激素相关基因数据库

59f657feb4f6254446a9224ba8ca5c5a.png

iMeta主页:http://www.imeta.science

研究论文

● 原文链接DOI: https://doi.org/10.1002/imt2.164

● 2024年1月8日,华北理工大学宋小明团队在iMeta在线联合发表了题为 “PHGD: An Integrative and User-friendly Database for Plant Hormone Related Genes” 的研究文章。

● 本文收集了模式植物拟南芥中所有已报道的激素相关基因,绘制了激素基因相互作用网络图,建立了PHGD平台网站(http://phgd.bio2db.com/),包括主页、浏览、搜索、资源、下载、工具、帮助和联系8个模块。

● 第一作者:冯书燕、刘卓、陈辉龙

● 通讯作者:宋小明(songxm@ncst.edu.cn)、马晓(maxiaoxiaos@sina.com)

● 合作作者:李楠、于彤、周蓉、聂付磊、郭棣

● 主要单位:华北理工大学生命科学学院、中国农业大学草业科学与技术学院、奥胡斯大学食品科学系、河北科技师范学院园艺科技学院

亮   点

976ea8bf1787a589887d6e0748068f97.png

●  构建了11种激素49个重要节点之间复杂的相互作用网络,为激素对植物生长发育的调控研究提供了核心节点和整体图景;

●  搭建了首个集齐11种植物激素的用户友好型数据库,为植物激素相关基因的功能研究提供重要参考资料和数据资源;

●  PHGD包括目前全部的激素相关基因,包括11种植物激素在大规模不同植物界的分布,涉及生物合成、代谢、感知、信号转导和转运通路。

摘  要

植物激素(Phytohormones)是植物体内产生的微量而能调节自身生理过程的有机化合物,对调控植物生长发育和响应外界胁迫具有至关重要的作用。目前已知的植物激素有生长素(Auxin,AUX)、乙烯(Ethylene,ETH)、细胞分裂素(Cytokinin,CK)、脱落酸(Abscisic acid,ABA)、赤霉素(Gibberellin,GA)、油菜素甾醇(Brassinosteroids,BRs)、茉莉素(Jasmonate,JA)、独脚金内酯(Strigolactones,SLs)、水杨酸(Salicylic acid,SA)、褪黑素(Melatonin,MT)和多肽激素(Polypeptide,PEP)共十一类。植物激素相关基因涉及多种通路机制,包括生物合成、代谢、感知、信号转导和转运通路。

迄今为止还没有一个数据库展示11种植物激素在大规模不同植物类群中的分布,并同时涉及生物合成、代谢、感知、信号转导和转运通路。因此,为了促进植物激素通路和机制的综合研究,我们收集了模式植物拟南芥中所有已报道的激素相关基因,并结合已有的实验背景,绘制了激素基因相互作用网络图。我们收集了469个高质量的植物基因组。然后,我们利用生物信息学来鉴定这些植物中与激素相关的基因。最后,这些基因数据被编程存储在数据库中,并建立了PHGD平台网站(http://phgd.bio2db.com/)。PHGD分为8个模块,即主页、浏览、搜索、资源、下载、工具、帮助和联系。我们提供数据资源和平台服务,使植物激素研究更加便利。

视频解读

Bilibili:https://www.bilibili.com/video/BV1tN4y1J7Hj/

Youtube:https://youtu.be/R8ecBgTKkJ8

中文翻译、PPT、中/英文视频解读等扩展资料下载

请访问期刊官网:http://www.imeta.science/

全文解读

引  言

植物激素是植物产生的少量有机化合物,可促进或抑制多种生理过程。植物激素主要包括生长素(Auxin,AUX)、乙烯(Ethylene,ETH)、细胞分裂素(Cytokinin,CK)、脱落酸(Abscisic acid,ABA)、赤霉素(Gibberellin,GA)、油菜素甾醇(Brassinosteroids,BRs)、茉莉素(Jasmonate,JA)、独脚金内酯(Strigolactones,SLs)、水杨酸(Salicylic acid,SA)、褪黑素(Melatonin,MT)和多肽激素(Polypeptide,PEP)。每种植物激素都在环境响应、防御响应、植物生长和发育中发挥作用。例如,细胞分裂素与细胞分裂、根和芽的发育、衰老和叶绿体的发育有关。多肽激素在植物生长发育和环境适应方面发挥着重要作用,包括短肽激素PROPEP(Precursor of peptid)、磺肽素PSK(Phytosulfokine)、快速碱化因子RALF(Rapid alkalinization factor)、激素小肽EPF/EPFL(Epidermal patterning factor/epindermal patterning factor like)、小肽家族CLE(Clavata3/esr-related)和小肽激素RGF(Root growth factor)等。褪黑素在植物的盐胁迫和干旱胁迫等不同方面发挥着重要作用。而且,它们之间还可以相互作用,甚至形成一个巨大的网络来调节各种生物过程。例如,褪黑素与水杨酸、茉莉素、生长素和脱落酸交互作用,进一步促进植物的抗性发挥。

植物激素相关基因涉及多种通路机制,包括生物合成、代谢、感知、信号转导和转运通路。因此,要全面分析植物激素复杂的相互作用网络和机制非常困难。在探索某些植物激素的作用机制方面,研究人员已经做了大量工作。例如,目前已报道的生长素信号通路主要有四种,即TIR1/AFB-Aux/IAA/TPL-ARFs、TMK1-IAA32/34-ARFs、TMK1/ABP1-RHO-ROP2/6-PINs和SKP2A-E2FC/DPB。不过,最后一种信号通路已提出多年,但争议很大,需要更多证据。此外,褪黑激素生物合成通路中的四种酶已被报道,包括色氨酸脱羧酶(TDC)、色胺-5-羟化酶(T5H)、5-羟色胺N-乙酰转移酶(SNAT)和乙酰血清素甲基转移酶(ASMT)。然而,褪黑激素信号转导通路机制仍不清楚。此外,多肽激素通路的机制也有待探索。

植物激素相关通路和作用机制的研究需要大量的人力和实验数据验证,因此是一项非常庞大和耗时的工作。另一种有效的方法是通过大数据和资源整合来进行分析。目前,有关植物激素的相关数据库还为数不多。其中,GSHR数据库(http://bioinfo.cemps.ac.cn/GSHR/)仅用于拟南芥激素基因的信息整合。另一个植物激素数据平台(https://plant-hormones.info/)目前不可用。据我们所知,迄今为止还没有一个数据库展示11种植物激素在大规模不同植物类群中的分布,并同时涉及生物合成、代谢、感知、信号转导和转运通路。因此,为了促进植物激素通路和机制的综合研究,我们利用生物信息学方法在469个高质量植物基因组中搜索激素相关基因,绘制了一个全面的植物激素复杂相互作用网络。根据低等植物中基因的缺失情况,探索了各激素通路的起源。最后,建立了一个数据共享平台,帮助研究人员研究植物激素基因。

结  果

收集拟南芥激素基因和469个物种的基因组数据

从文献和TAIR数据库(https://www.arabidopsis.org/index.jsp)中人工筛选了所有拟南芥激素相关的基因。首先,使用“AUX”、“ABA”、“plant hormone”、“phytohormone”、“Arabidopsis”和“phytohormone pathway”等关键词在PubMed、Web of Science和Google Scholar上进行了全面搜索。然后对检索到的论文进行初步检查,以消除假阳性论文。关于植物激素通路信息,除文献外,我们还查阅了KEGG植物激素通路数据库。最后,我们从973篇文献中收集并整理出模式植物拟南芥的914个植物激素基因,包括生物合成、代谢、感知、信号转导和转运通路中的关键基因(详见表S1-2)。经过一系列的基因组数据收集和筛选,本研究采用了469个具有高质量基因注释的物种,其中包括314个双子叶植物、85个单子叶植物、6个木兰类植物、3个基部被子植物、8个裸子植物、6个蕨类植物、8个苔藓植物和39个藻类植物。其中藻类植物包括1个灰胞藻、1个华藻、8个红藻、22个绿藻和7个轮藻(详见表S3-4)。同时,这些物种还可分为开花物种(408个)和非开花物种(61个)。根据Plant Genomes(https://www.plabipd.de/plant_genomes_pn.ep)的信息,收集并下载了469个研究物种的gff(general feature format)文件、CDS(coding sequence)和蛋白序列。

拟南芥11种激素节点基因的网络拓扑图构建

我们收集并整理了现有的植物激素基因互作相关文献,构建了拟南芥中11种植物激素基因的网络,这些基因涉及生物合成、代谢、感知、信号转导和转运通路(图1A)。此外,网络图还包括多种生物学效应,如免疫防御、盐胁迫、热胁迫、气孔关闭、分枝和维管发育。网络拓扑图中共有104个节点。其中,49个关键节点有3条线相连,在激素相互作用中发挥着十分重要的作用。复杂调控网络的构建使我们能够更系统地了解激素信号互作机制。

6f954dce354ae1da2c3f07fb323490a8.png

图 1. 拟南芥中11种植物激素网络的拓扑结构和植物激素基因数据库(PHGD)的结构

(A)拟南芥中11种植物激素网络的拓扑结构;(B)PHGD的结构。

植物激素基因的鉴定

结合参考文献,筛选出了各植物激素通路中的关键组分。例如,细胞分裂素合成通路中的关键限速酶磷酸核糖水解酶(LOG)和异戊烯基转移酶(IPT),以及在细胞分裂素转运通路中发挥重要作用的PUP、ENT和ABCG14转运蛋白。我们还总结了近年来新增的植物激素成员褪黑素的关键合成成分和PMTR1受体。此外,我们还增加了多肽激素PROPEP、PSK、RALF和EPF / EPFL。然后,我们通过Pfam数据库(34.0版)和Blast(2.10.1版)收集了Pfam的结构域信息和这些关键成分的蛋白质序列以进行Blast,从而在469个物种中鉴定出这些成分。根据之前的报道,我们使用Pfam数据库鉴定了每个家族的所有成员,并使用blastp获得了激素成分蛋白的相似性关系(E值小于1e-5)。针对blast结果,我们分别设定了高等植物和低等植物激素成分的过滤标准。对于高等植物,为不同成分设定过滤标准的主要依据是参考基因组的多倍化关系。例如,从理论上讲,白菜的基因组是拟南芥的三倍。然而,由于基因的大量丢失,白菜中鉴定出的激素基因数量应该是拟南芥的1.2到2倍左右。根据这一理论,我们综合所有物种的初步鉴定结果,确定了一个最佳阈值,并将该阈值作为激素成分的过滤标准。对于低等植物,则根据之前报道中使用的过滤标准,如轮藻(Chara braunii)和小立碗藓(Physcomitrella patens)。我们选取了11种植物激素各通路中的104个重要成分,并收集了它们的结构域信息和蛋白质序列,以便根据相关标准进行blast(详见表S5-7)。我们对研究的所有植物类群中的104个通路成分进行了分类并获得了基因数量(详见表S8-19)。

探索11种植物激素通路的起源

我们在不同植物类群中选择了共64个具有代表性的物种,展示了11种植物激素各通路成分的分布情况(详见表S20),并根据基因的存在和缺失情况确定了激素通路的起源节点。首先,我们统计了11种激素通路成分在469个物种(408种高等植物和61种低等植物)中的分布情况(详见表S19)。然后,在避免物种损失的前提下,我们选择了从低等藻类到高等双子叶植物的不同类群中的64个代表性物种(11个高等植物和53个低等植物),统计了这些物种中每个通路成分的存在情况。如果物种中存在该通路成分,我们将其定义为“1”,如果不存在,我们将其定义为“0”(详见表S20)。最后,我们根据这一统计结果推断出不同通路的起源节点。在此,我们选择生长素、细胞分裂素、多肽激素和褪黑素作为例子。

生长素

生长素合成成分YUCCA的同源蛋白分布在所有植物类群中,并且色氨酸合成蛋白只存在于陆地植物。这一结果表明,生长素的合成通路起源于陆地植物的共同祖先。生长素受体TIR1/AFB在所有植物类群中均有发现,ABP1在三种绿藻(Chlorella variabilis、Micractinium conductrixChlamydomonas reinhardtii),五种轮藻类植物(Klebsormidium nitens、C. braunii、Mesotaenium endlicherianum、Penium margaritaceumSpirogloea muscicola)和几乎所有陆地植物中被发现。这一结果表明完整的生长素感知通路起源于绿藻。信号转导成分AUX/IAAs、SAUR和ARF存在于轮藻和陆地植物。其他关键信号转导成分ROP、Toppless和TMK存在于所有植物类群。DPB、E2FC和SKP2A分散在大部分所研究物种中,但只同时存在于63个高等植物(详见表S19)。由于SKP2A/E2FC/DPB的高争议度,我们只研究了DPB、E2FC和SKP2A在物种中的分布情况,并不作为起源研究的参考。简而言之,我们的结果表明,生长素信号转导起源于轮藻类植物。转运成分AUXIN1(AUX1)/like AUX1、PIN-formed(PIN)/PIN-likes和ABC转运家族存在于所有植物类群,表明生长素转运通路起源于灰胞藻。代谢成分GRETCHEN HAGEN 3最初是在绿藻C. variabilis中被发现,其次是轮藻K. nitensM. endlicherianum以及所有陆地植物。这些结果表明生长素代谢通路起源于绿藻。

细胞分裂素

细胞分裂素合成成分LOG和IPT存在于所有植物类群,说明生长素合成通路在灰胞藻时已经存在。代谢成分细胞分裂素氧化酶仅存在于陆地植物,表明细胞分裂素代谢通路起源于陆地植物的最后共同祖先。细胞分裂素受体拟南芥组氨酸激酶仅在轮藻和陆地植物中被找到,这表明细胞分裂素感知通路起源于轮藻类植物。信号转导成分组氨酸磷酸转运蛋白(AHP)和细胞分裂素响应因子存在于除红藻外的其它所有植物类群。此外,type-A ARRs仅在一些红藻物种中没有出现,type-B ARRs出现在灰胞藻、所有红藻物种、一些绿藻和一些轮藻物种中。这些信号转导成分同时存在于华藻、一些绿藻和轮藻以及陆地植物中,这表明细胞分裂素信号转导通路可能起源于华藻。转运成分PUP仅在两个红藻(Cyanidiococcus yangmingshanensisCyanidioschyzon merolae)、三个绿藻(Asterochloris glomerata、C. variabilisChromochloris zofingiensis)和陆地植物中被发现。其它转运成分ENT和ABCG14存在于每种植物类群。这些结果暗示细胞分裂素转运通路起源于红藻。

多肽激素

PROPEP多肽家族存在于八个绿藻物种(A. glomerata、Coccomyxa subellipsoidea、C. variabilis、Chlamydomonas incerta、Chlamydomonas eustigma、Edaphochlamys debaryana、Gonium pectoraleC. zofingiensis)、五个轮藻物种(Chlorokybus atmophyticus、K. nitens、M. endlicherianum、P. margaritaceumS. muscicola)和陆地植物中,这表明PROPEP起源于绿藻。此外,我们发现PSK多肽家族仅存在于裸子植物和被子植物,这表明PSK起源于裸子植物的最后共同祖先。RALF和EPF/EPFL多肽家族存在于所有陆地植物但不存在于藻类,这暗示它们都起源于陆地植物的最后共同祖先。

褪黑素

在我们的研究中,我们发现褪黑素合成成分TDC最初在绿藻中存在其同源蛋白,SNAT在灰胞藻中并且ASMT在华藻中。这三种合成成分同时存在于三个绿藻物种(C. subellipsoidea、C. zofingiensisMonoraphidium neglectum)、一个轮藻物种(M. endlicherianum)和大多数陆地植物。我们并没有在拟南芥中找到作为blast搜索序列的T5H基因,因此我们对其没有研究。根据TDC、SNAT和ASMT的结果,我们推测褪黑素合成通路起源于绿藻。受体PMTR1的同源蛋白被发现存在于绿藻、轮藻和陆地植物中。因此褪黑素感知通路也起源于绿藻。

植物激素基因数据库(PHGD)构建

通过对上述已发现的激素基因进行归纳总结,参考之前的报道,利用友好的网络界面构建了植物激素基因综合数据库(PHGD,http://phgd.bio2db.com/)。PHGD包括来自469个物种的11种植物激素(图1B)。此外,PHGD还包含每种植物激素的生物合成、代谢、感知、信号转导和转运通路的104个组成部分(图1B)。此外,PHGD还整合了11种植物激素的功能和相互作用网络(图2A-C)。在此,我们概述了PHGD的界面,包括浏览(Browse)、搜索(Search)、资源(Resources)、下载(Download)、工具(Tools)、帮助(Help)和联系(Contact)界面,以帮助用户轻松使用我们的数据库(图2A)。

1d565f160a24e10e446d5bc05e5a5612.png

图2. PHGD主要界面概览

(A-C)主页;(D)浏览;(E)搜索;(F)资源;(G)工具;(H)下载;(I)联系;(J)帮助。

浏览

我们提供了“Species”和“Pathway”两种模式供用户浏览植物激素基因(图2D)。在“Species”模式下,我们对物种进行了分类,用户可以根据查询的物种分类轻松找到自己的物种。然后,用户可以在表格中查看每种植物激素通路中的所有成分。表格中的“MORE”列包含具体的基因信息,如基因名称、Pfam或 blast信息、CDS和蛋白质序列。用户也可直接在表格的“CDS”和“Pro”栏中下载序列。点击“Bar”或者“Pie”,用户可以看到每种激素通路的数量或比例。此外,用户还可以根据自己的需要点击“Download”,下载各物种的植物激素数据。在“Pathway”模式下,用户可以查看一个通路中每个成分的所有物种的植物激素基因,并通过柱状图显示每个物种的基因数量。用户可以下载激素通路中所有成分的数据。

搜索

用户可以搜索每个物种中11种植物激素的相关基因(图2E)。每个通路中基因的数量和比例以饼状图显示。用户还可以在数据视图中查看数据并直接用于研究。搜索结果包含丰富的信息,包括基因名称、Pfam(pfam id、结构域、E值和家族)或blast(染色体、起始、终止、与拟南芥同源的基因以及注释)、CDS和蛋白质序列。

资源

资源部分包括物种、基因和分类信息(图2F)。我们提供了本研究中使用的物种的拉丁名、分类、基因组信息、发表的文章和数据下载链接。此外,我们还提供了拟南芥植物激素基因的详细信息,包括基因名称、通路、参考文献、期刊、发表年份和作者。用户可直接下载这些信息进行相关研究。

工具

我们提供了两种常用工具Blast和Primer Design来帮助用户进行植物激素基因分析(图2G)。Blast工具用于帮助用户进行CDS或蛋白质序列比对。我们构建了一个友好的用户界面,并利用来自469个物种的各通路植物激素基因建立了一个Blast数据库。所有用户只需将序列复制到框架中或上传Fasta格式的序列,即可轻松进行序列比对。我们还开发了引物设计工具,帮助用户设计植物激素基因或其他指定基因的引物。

下载、帮助和联系

用户可根据研究需求从下载界面获取植物激素基因序列(图2H)。此外,我们还提供了地址、电子邮件和电话号码,以便用户就任何相关问题与我们联系(图2I)。在帮助部分,我们提供了详细的使用手册和视频,让用户了解如何使用PHGD数据库的各个界面(图2J)。我们还鼓励用户向我们提交新的植物激素基因以进一步丰富数据库。

PHGD使用示例

我们选择了白菜等植物中属于CK信号转导通路的AHP基因数据作为下载和进化分析的实例。首先,在搜索页面搜索目标物种和通路,查看相关信息,确定感兴趣的目标基因(AHP基因)(图3A)。然后在下载页面选择目标物种AHP基因的序列文件(图3B)。经过Pfam(34.0版)、SMART(9版,https://smart.embl.de)和CDD数据库(3.17版,https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml)的验证,我们确定了6个拟南芥AHP基因,与之前的报道一致。接下来,我们使用Neighbor-Joining方法进行序列比对,并使用MEGA X软件构建了系统发育树。然后,根据我们以前发表的方法,以拟南芥AHP基因为参照,对白菜、甘蓝和油菜的AHP基因进行了扩张分析(图3C-E)。根据物种所经历的多倍化关系(图3F),理论上拟南芥、白菜、甘蓝和油菜的基因数量关系为1:3:3:6。结果表明,与每个拟南芥AHP基因相对应的同源基因都有所丢失。从PHGD中下载的拟南芥、白菜、甘蓝和油菜AHP基因数量分别为6、8、8和16个。油菜是白菜和甘蓝的杂交种,因此白菜和甘蓝的AHP基因数之和等于油菜的AHP基因数。结合系统发育树,我们发现AHP基因在油菜中的扩张是由杂交引起的间接扩张,而在白菜和甘蓝中的扩张是由基因组复制引起的直接扩张。

0c8a576aec992593b3b6c88936f38e4c.png

图3. PHGD数据分析应用演示

(A)数据查询;(B)数据下载;(C-F)以拟南芥为参照,对白菜、甘蓝和油菜的组氨酸磷酸转运蛋白(AHP)基因进行扩张分析;(G)来自8个代表性物种的AHP基因的最大似然(ML)树;(H)植物中AHP基因的获得与丢失示意图。

为了进一步探讨AHP基因的进化轨迹,我们从PHGD平台下载了植物界中 8个代表性物种(拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、流苏马兜铃(Aristolochia fimbriata)、无油樟(Amborella trichopoda)、欧洲云杉(Picea abies)、江南卷柏(Selaginella moellendorffii)、小立碗藓(P. patens)和莱茵衣藻(C. reinhardtii)的AHP序列。然后,使用Mafft(7.475版)进行序列比对,并使用FastTree(2.1版)构建系统发育树(图3G)。最后,使用Notung软件(2.9.1.5版)分析基因的复制和丢失。根据之前的方法推断了祖先节点的基因数量(图3H)。结果显示,陆生植物和莱茵衣藻的祖先含有4个AHP基因。低等植物的损失更为严重。其中,莱茵衣藻的AHP基因丢失了3个,获得0个。而小立碗藓的7个AHP基因和江南卷柏的6个AHP基因则分别丢失了1个和0个。陆生植物的共同祖先含有8个AHP基因,种子植物的共同祖先含有6个AHP基因。被子植物的共同祖先含有9个AHP基因。双子叶植物和单子叶植物的共同祖先含有9个AHP基因。从低等植物的AHP基因数量到高等植物的AHP基因数量,呈现出一种扩张的进化模式。

讨  论

在这项研究中,我们通过大量文献和调查确定了模式植物拟南芥的11类植物激素通路中涉及的914个基因,并整合了大量的前人研究绘制了11类植物激素相互作用的复杂网络。该网络中的植物激素通路包含104个组分,涉及生物合成、代谢、感知、信号转导和转运通路。其中,49个节点至少与三个组分密切相关,为植物激素相互作用的研究提供了核心节点,也为激素调控植物生长发育提供了整体蓝图。然后,通过同源检索,我们在469种植物(408种开花植物和61种非开花植物)中发现了作为11种植物激素通路关键组分的基因。然后,基于这些大数据,我们探索了植物激素基因在各通路中的起源。最后,我们构建了一个用户友好的植物激素数据库平台,以帮助人们研究植物激素。

总而言之,这是首次大规模收集和整合全面的植物激素通路。作为植物激素数据资源的重要平台,PHGD将极大地促进植物激素基因的相关研究。今后,随着越来越多基因组的发布和激素研究的创新,我们还将不断完善和更新这个数据库。

数据可用性

本研究中的所有相关数据均可在PHGD(http://phgd.bio2db.com/)查阅。补充材料(图、表、脚本、图文摘要、幻灯片、视频和中文翻译版以及更新材料)可通过在线DOI或者iMeta Science http://www.imeta.science/获取。

引文格式

Feng Shuyan, Zhuo Liu, Huilong Chen, Nan Li, Tong Yu, Rong Zhou, Fulei Nie, Di Guo, Xiao Ma, and Xiaoming Song. 2024. PHGD: An Integrative and User-friendly Database for Plant Hormone Related Genes. iMeta e164. https://doi.org/10.1002/imt2.164

作者简介

526d06bf73352fd97ed4f40229b86280.jpeg

冯书燕(第一作者)

●  华北理工大学硕士。

● 研究方向为:生物信息学、植物基因组学、转录组学、代谢组学、单细胞转录组分析等。相关学术成果已发表于iMeta、Plant Biotechnology Journal、Horticulture Research等期刊。

e044982e7cf5d81a832ace62a02236a3.jpeg

刘卓(第一作者)

●  华北理工大学生物学硕士。

●  目前研究方向为组学数据库平台搭建,相关学术成果已发表于Plant Physiology、Horticulture Research等期刊。

57e74b935d072a39c4fca153a1fca8c0.jpeg

陈辉龙(第一作者)

● 中国农业大学博士研究生。

● 曾任大学计算机专业教师,CFVisual、CyDotian等软件作者,已申请五项软件著作权,以第一作者身份在BMC Bioinformatics、BMC Genomics、International Journal of Biological Macromolecules等国际期刊发表学术论文多篇,Chemical Engineering Journal、Journal of Advanced Research等国际期刊审稿人。研究方向为:牧草生产与加工利用,机器学习在草学领域微生物中应用,生物信息学算法、软件、数据库平台开发,植物比较基因组学等。

6abea9a0f11bb6bfa2fbe52989adcdd2.jpeg

宋小明(通讯作者)

● 华北理工大学教授。

● 主要从事园艺作物组学及生物信息学研究。发表SCI论文100余篇,累积影响因子400+,引用3000余次,h-index=33。以第一作者或通讯作者在iMeta、Plant Biotechnology Journal、Plant Physiology、Plant Journal和Horticulture Research等国际著名期刊发表SCI论文50余篇,其中中科院一区top论文20余篇(4篇影响因子>10,15篇影响因子>7)。获得软件著作权4项、专著3部。主持国家自然科学基金面上和青年项目、国家重点研发计划-青年科学家项目、中国博后科学基金特别资助、教育厅青年拔尖人才等十余个项目。担任园艺领域顶级期刊Horticulture Research副主编、SCI大类一区top期刊Horticultural Plant Journal编委和Journal of Integrative Agriculture青年编委。担任期刊Vegetable Research和Forestry Research副主编。担任iMeta、Agriculture Communications等期刊青年编委。荣获中国科技期刊卓越行动计划选育高水平办刊人才子项目-优秀审稿人案例奖、河北省自然科学二等奖。荣获河北省杰青、河北省“燕赵英才”和唐山市“凤凰青年英才”等多项荣誉称号。

更多推荐

(▼ 点击跳转)

高引文章 ▸▸▸▸

iMeta | 引用7000+,海普洛斯陈实富发布新版fastp,更快更好地处理FASTQ数据

1e16ea6cf87e20d9c97ea27340e7015c.png

高引文章 ▸▸▸▸

iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法

cfb6cd960345eab129d4243b7ee1a169.png

高引文章▸▸▸▸

iMeta | 高颜值绘图网站imageGP+视频教程合集                                        

2e2a082fc861ec2e9dd83f857749de72.png

1590810ca0213425f24bdf7a4501cb83.jpeg

1卷1期

febffd41c9d382ad8b2bddd42ed805b9.jpeg

1卷2期

a63604af8c41ad6df88fe5d6a2010485.jpeg

1卷3期

6f1e38f005024050ef211eb099fbbe62.jpeg

1卷4期

55582bfc87b8161df99c9f0d04d7c495.jpeg

2卷1期

d6b1ec8a45cb412cdb9a0d604181cb1e.jpeg

2卷2期

1402b5ad320a62978a98bb9241985847.png

2卷3期

d7abc65e34e955b310dd5abe32bbff81.jpeg

2卷4期

期刊简介

“iMeta” 是由威立、肠菌分会和本领域数百位华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 15)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、50万用户的社交媒体宣传等。2022年2月正式创刊发行!目前期刊已经被ESCI、Scopus等数据库收录。

联系我们

iMeta主页:http://www.imeta.science

出版社:https://onlinelibrary.wiley.com/journal/2770596x
投稿:https://mc.manuscriptcentral.com/imeta
邮箱:office@imeta.science

高颜值免费 SCI 在线绘图(点击图片直达)

df66156122cc40a4ba90e5b85a5606ae.png

往期精品(点击图片直达文字对应教程)

d1284ce71c7cafa9fa0954d31b9e2eb2.jpeg

d4c5d4ec774d7b2c3ea5e7340a9c88f8.jpeg

229ee243f14f9531033f43283184e6c4.jpeg

4aa277a014db7de69b4bb009356ad3ef.jpeg

27066b2fcc8f80e2b96e71a430850684.jpeg

150a80c559c63343a790068e3d9cf44b.jpeg

282fba8c799aecc771e341cfa4868c40.jpeg

9e3310633236cefc5f24784a4ae1fa4c.jpeg

ad0c66228c5bbab2a03ece5d2b20dffc.jpeg

da3ffde192b4c747b9fca1312b8e2547.jpeg

fc2c13058999599a8942e0f33a389052.jpeg

e8e8c66516b1267482333f429ad65031.jpeg

65ac2e6c7a037c085e378648d69d5666.png

5c0b12792b34d8194dc0fd78f084e216.png

1e4a6ed596f6d36a57236237cdbe422b.png

6540ddf735205aae6204e12b09e5d403.png

3b7dcda5893e48100b6f2e0022ef0199.jpeg

f71c5e9b353bf42905ff49b500f8e336.jpeg

7dde7b17165111bcc40d03f8af0f8e7d.jpeg

556527c3047d22082405b58b357b183b.jpeg

27fe3d59eddbff0d537e00b16de9d7a0.png

22a377070b25e999d5cc2e6fa0162410.png

dba2e3579b4bff1aed7239d7c8255c58.jpeg

bfd6e1e38dd3685285ddfd75d86dab0a.png

f4e3152a745c9a19ccaaaf4d1ef4060c.png

b6b021e8a60fc33a820a678750219ed4.jpeg

162203345b8f65bb1406b77d0afb1ccb.png

2caeba2cb04b91811e5980389da3898b.png

机器学习

3b6a68cf80830ea34280308ac19ea514.jpeg

7bf8df404c0ef02b80267fc45ab89dc8.jpeg

46dd00eef661a6921cf6301a74642e85.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值