Nature Plants | 浙江大学樊龙江团队开展植物基因组测序与组装技术分析并建立N3数据库...

植物基因组学研究为植物基因功能、群体遗传、进化和育种研究提供了重要基因组数据资源。近日,浙江大学樊龙江教授课题组在国际知名期刊Nature Plants发表了题为“Technology-enabled great leap in deciphering plant genomes”文章,开展了植物基因组测序与组装技术分析,并建立了N3数据库。

57f9629859f217a6150de5f4d8e7d8f8.png

Xie, L., Gong, X., Yang, K. et al. Technology-enabled great leap in deciphering plant genomes. Nat. Plants (2024). https://doi.org/10.1038/s41477-024-01655-6

该研究系统收集并分析了自2000年(第一个植物基因组发表)以来测序组装完成的高质量植物基因组,合计包括来自1,575个物种的3,517个基因组。这些测序完成的基因组中,2/3的基因组(2,373个)和1/2的植物物种(793个)是在最近三年(2021-2023)完成的,相比于前20年(2000-2020)呈现出了一个巨大飞跃(图1)。该研究系统分析了完成这些基因组的测序技术和组装算法及其变迁。测序和拼接技术的进步推进了近期植物基因组学研究的快速发展。为了更全面地展示测序物种信息,并提供有关测序技术和组装算法应用情况,他们搭建了N3数据库(N3: plants, genomes, technologies),提供了现有3,517个植物基因组的详细信息,包括测序平台、组装质量、组装工具、可用基因组及其注释文件的下载链接等。该数据库为植物基因组学研究提供了重要资源和支撑。

429bbda2d02cc250ebae80d58b55f361.png

图 1 | 植物基因组测序拼接和组装质量情况

近三年来,除了测序基因组数量的激增,植物基因组的组装质量也在迅速提高。拼接达到染色体水平的基因组比例从前20年的47.3%增长为近三年的73.2%,平均contig N50大小从1.44 Mb增长到11.92 Mb。近三年组装的2,373个基因组涵盖了植物界物种的主要分支(目),同时大量研究致力于更高质量基因组的组装,例如单倍型基因组,泛基因组和端粒到端粒(T2T)基因组(图2)。目前已有63个植物基因组达到T2T高质量组装。植物基因组学研究离不开世界各国科学家的共同努力,其中来自中国和美国的科学家完成测序组装的基因组最多,中国贡献比例从前20年的35.3%上升到近三年的61.8%,在基因组学领域再次体现了中国力量。

db031c77fa50b1e314113d84707762f4.png

图 2 | 植物系统发育及其各主要分支(目)基因组测序物种数量及其相关拼接质量指标。红色表示该目物种为最近三年内才被测定,灰色表示该分支内尚无物种被测序。

测序技术平台的发展,其在读长、通量、准确性和成本方面的提升都显著促进了高质量、高复杂度植物基因组的获得。在近三年组装的基因组中,94.0%的基因组均利用了三代测序(TGS)技术,已占据主导地位,6.0%的基因组仅使用二代测序(NGS)数据进行拼接。其中三代HiFi数据在2022年的使用比例激增,2023年已达到35.1%。组装算法的创新也为获得更完整的复杂基因组提供了机会。算法革新促进了基因组组装三个关键步骤(contig assembly、polishing和 scaffolding)相关软件工具的开发(图3)。文章详细分析了组装三个阶段的不同特点,统计分析了每个阶段最常使用的软件并详细阐述了其算法的迭代过程。例如基因组拼接步骤,其算法最初是基于测序读序重叠区联配延伸的OLC算法为主,NGS数据出现后德布鲁因图(de Bruijn graph)算法成为主流算法(如SOAPdenovo和Velvet),而随着TGS数据的出现,由于测序读序变长,OLC算法(如Canu)重新换发活力,同时串图(string graph)算法(Hifiasm,Falcon和NextDenovo)可以利用长读序优势,同样成为主流算法。

470cd48c64955c65d7c71b1e0f8cc5ea.png

图 3 | 植物基因组组装三个阶段中最常使用的生物信息学工具/算法及其变迁

该研究搭建的N3数据库,提供了1,777篇植物基因组相关论文的元数据,涵盖来自1,575个物种的3,517个植物基因组的详细信息。N3数据库还从目前测序完成的91个目中选择了91个具有代表性物种基因组及其基因注释集,提供BLAST搜索和JBrowse基因组浏览等功能。该数据库目前包括五个模块(“Statistics”, “Search”, “Pan&T2T”, “Tools”和“Links”),为广大研究人员提供了一个及时跟踪获取已测序的植物基因组详细信息的综合平台。

ed6ef1687f97ed36f5c3e3d9d92e286c.png

图 4 | N3 数据库概览

植物界已知存在50万个不同物种,大多数物种的基因组具有高重复、高杂合和多倍体等复杂特征。虽然目前已测序完成了约1500个物种,但这仅仅是冰山一角,许多不同类型(目)植物甚至还没有一个参考基因组(图2),植物基因组学研究任重道远。但伴随着测序技术和组装算法的不断创新,更多类型更高质量更大更复杂的基因组将被测序,植物生物学研究必将迎来更大发展机遇。

浙江大学农业与生物技术学院和海南研究院博士生谢玲娟、硕士生龚晓娇为论文共同第一作者,樊龙江教授为通讯作者。澳大利亚CSIRO朱乾浩研究员参与了该研究。项目研究得到了浙江省科技厅和海南省科技厅的支持。

樊龙江教授团队长期在植物基因组及其演化和环境适应方面开展研究,近年来在植物基因组和泛基因组方面取得了系列成果,分别在Nature Ecology & Evolution、PNAS、Molecular Plant、Nature Communications、Genome Biology等刊物上发表相关论文。

NAR | 整合药用植物组学平台 IMP中文教程(基因组更新到 466 个植物)

高颜值免费 SCI 在线绘图(点击图片直达)

ea95304fae71957f72fda2fb1e428604.png

往期精品(点击图片直达文字对应教程)

a7284cbb1890d9d986fa97d40d7cd525.jpeg

55e0a362faafd58aeb954e19bb007263.jpeg

b00dc6068366cd781eee648ff4d3eb7c.jpeg

6854d711f2d96f85d150677059b282a1.jpeg

ac75bf50639b230c072c7f97390d91b5.jpeg

1f042c73bdbe7ecc393940f3b084effb.jpeg

5d7cb7c3efb86fbabe6043a91ca24a55.jpeg

70509476411d11d4182ffa9f813fc12a.jpeg

5d55701114213533bb0618566e47af14.jpeg

7c454c72bedb9f20df5412b41b2779a6.jpeg

41e741a6f84ee7b086c64027d0b28771.jpeg

9bdb8f4eba268769b7b96461b0a83f7d.jpeg

424f8729e2f1ffd2e76e0274368de40e.png

8a9d4c508c53d790690f01d1087cddf5.png

36aff3408662c9442cbd054ade90b23f.png

086237918325f783c6eee834e448d3b0.png

d4e5983753e4eac79f2f09131c8ac400.jpeg

e47bb4f15889a80239afc79ac90c9c8c.jpeg

9fab9cdf2c332e8ec9caff8033f8c254.jpeg

01aa4d046bb4de8df75bc57845f346fa.jpeg

11243396c7e977bf319a5fce0ba051bc.png

99cda41eeffd5885801888b69cb2f1f1.png

34b0184f8d005f9583b6a9dc5c37eb6c.jpeg

f74b94ea1f5ca40c234753511f4c79a0.png

91c95a270315a7e5828c231720b6c8f6.png

a65a6ce15efe888220429b1728f930ba.jpeg

f30ccaa6127516878857e33ef55da444.png

76775e393454fde15255244b45a000dc.png

机器学习

49f93196513ea2e281b6c8ba48bacab7.jpeg

d15240b71f4ac533d621594f47e53618.jpeg

02b9376efdf649e942d1ae4586f2280c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信宝典

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值