Nucleic. Acids. Res. | 又双叒叕升级了!ADMETlab 3.0——全面升级的药物ADMET预测平台...

在药物研发的漫长过程中,药物早期筛选中的ADMET(吸收、分布、代谢、排泄特性和毒性)评估是决定药物成功与否的关键因素。自2018年中南大学湘雅药学院曹东升课题组首次发布ADMETlab以来,该平台不断改进ADMET的预测性能和药物研究者的使用体验。作为一个领先的ADMET预测平台,它也广受认可。截至目前,ADMETlab 2.0的文章已被引用1088次,网站访问量超过170万次。为了满足广大科研工作者更高的需求,此次将ADMETlab升级到了3.0版本。这是一个全面更新的在线ADMET预测平台,旨在为药物发现过程中的ADMET相关参数提供更广泛、更高效、更精准的评估。网站链接:https://admetlab3.scbdd.com。

631f7e0ba8a1956aa7aec39a8b090c0f.png

图1. ADMETlab 3.0数据及DMPNN-Des模型框架概览

ADMETlab 3.0的特点

更广泛的终点覆盖:ADMETlab 3.0团队基于现有的ADMET数据集进行了广泛的重新收集和重组,整合了包括ChEMBL、PubChem和OCHEM等开放获取的生物活性数据库,以及经过严格同行评审的文献。ADMETlab 3.0共包含了119个终点,其中77个为建模终点,42个为直接计算终点。终点种类比前一版本增加了31个,覆盖了超过40w个条目,是前一版本的1.5倍。该版数据包括了一些新增的物理化学性质、吸收终点、跨膜转运蛋白抑制剂的分布数据以及代谢终点,如CYP抑制和人类肝微粒体稳定性数据。毒性方面也新增了五种体内毒性和四种体外毒性终点。此外,药物吸收、分布和排泄的数据量扩增了20%、20%、125%和20%,详情见图2。这次全面的更新使ADMETlab 3.0成为迄今为止最全面的ADMET属性在线预测平台,有助于准确预测和深入研究新的化合物分子。

8cb59e55f10f2b8d2b7ed0454a7eaa5a.png

图2. A. 吸收、分布、代谢和物理化学性质的数据集大小。B. 毒性属性的数据集大小。

性能提升: ADMETlab3.0构建了77个基于DMPNN-Des或DMPNN的预测终点,18个为回归模型,59个为分类模型。DMPNN为单纯的图神经网络构架,DMPNN-Des为图神经网络合并RDKit 2D描述符的模型构架。回归模型中已有终点的R2值主要在0.75到0.95之间,五个新增终点的R2值在0.8到0.9之间。分类模型中已有终点的AUC值在0.72到0.99之间,新增终点的AUC值在0.73到0.96之间。此外,与2.0版本的MGA模型相比,DMPNN-Des和DMPNN在回归任务中显示出更高的性能,并在大部分分类任务中表现更优秀。三种模型的表现和对比详见图3。结合模型表现,ADMETlab 3.0平台采用多任务DMPNN-Des模型,这在平衡每个终点的计算速度、准确性和稳健性方面取得了最优表现。

8bd293214f27204ccd5bd563e5d1bb3c.png

图3. 回归和分类任务中DMPNN-Des、DMPNN和MGA的比较。A. 回归任务的R2值。B. 分类任务中药代动力学终点(ADME)的AUC值。C. 分类任务中毒性终点的AUC值。

API功能:为了满足对大规模ADMET预测和程序化访问的需求,ADMETlab 3.0引入了API功能,使研究人员能够通过高效地访问平台进行批量预测。通过成熟的协议和广泛使用的编程语言,用户可以方便地获取全面的计算结果,其中包括不确定性评估的结果。API的灵活性也鼓励开发者将其功能用于更广泛的应用,例如开发特定分子数据库、图形用户界面和用于ADMET评估的Web应用程序等。

dc69e70651de6ccb487e440cdd44cea5.png

图4. 通过调用API进行预测的Python代码示例

决策支持:在预测建模中,提供预测结果的不确定性估计(uncertainty estimation)是评估预测准确性和可靠性的重要指标,有助于用户在虚拟筛选过程中对候选化合物根据置信值进行选择。。回归模型采用了基于证据的(evidence-based)深度学习方法,并在Chemprop中使用了"evidential_total"估计方法,综合考虑了证据性认识不确定性和随机不确定性。分类模型使用了蒙特卡洛dropout方法评估不同属性的不确定性,通过API用户可以获取带有置信度标签的预测结果。

与现有工具的比较

作者比较了ADMETlab 3.0、ADMETlab 2.0和几个其他ADMET预测平台的端点信息和处理效率。结果显示,ADMETlab 3.0和2.0版本在整体的数据支持和评估性能上优于其他平台,包括SwissADME、admetSAR2.0、FAF-Drugs4、pkCSM和vNN-ADMET。相较于最新的ADMET-boost和Interpret-ADMET平台,ADMETlab 3.0也表现出更好的覆盖率和实用性能。ADMETlab 3.0通过提供不确定性估计分数、可视化表示每个输出的决策状态以及突出显示警示子结构等方式来展示其多样化的可解释性。对比详情见表1。此外,与2.0版本相比,该版本通过更丰富的文档、更好的指导页面和增强的网页设计显著提高了用户体验。用户指南信息可在网站上的“Help”部分找到。

表1. ADMETlab(2.0和3.0版本)与其他基于Web的平台主要特性的比较

7f2f650beadde493370285b0d6e501df.png

总结

ADMETlab 3.0的发布对药物研发领域中计算机辅助工具的丰富有着重要意义。该平台不仅解决了之前版本的一些限制,还引入了创新特性,以满足该领域的动态需求。ADMETlab研究团队计划继续优化平台性能,扩展数据集,并进一步提高预测模型的准确性和可靠性。ADMETlab 3.0作为一个公共资源,无需注册即可访问,为药物开发者和化学家提供了一个更全面、可靠和准确的服务。

参考资料

Li Fu, Shaohua Shi, Jiacai Yi, Ningning Wang, Yuanhang He, Zhenxing Wu, Jinfu Peng, Youchao Deng, Wenxuan Wang, Chengkun Wu, Aiping Lyu, Xiangxiang Zeng, Wentao Zhao, Tingjun Hou, Dongsheng Cao, ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support, Nucleic Acids Research, 2024;, gkae236, 

https://doi.org/10.1093/nar/gkae236

高颜值免费 SCI 在线绘图(点击图片直达)

229acb59aa446fe6ef6e32c6a50cf8df.png

最全植物基因组数据库IMP (点击图片直达)

e5a5b38f2fa17ed7034e048631721780.png

往期精品(点击图片直达文字对应教程)

67241d2626e3fa67156e83c5c1997c51.jpeg

823ddef90c5fe4784957d6a737c6dc76.jpeg

cd874a073d0e9c9c1e7fc0fc564a34c0.jpeg

ab3f6cd956158792943aec6d01659c76.jpeg

a3326c2c0d61df5c149d64cea04cb3aa.jpeg

5b2b79fa17939848223f61f9ec64374b.jpeg

d2ecab8a1a135b831d5bafa2ab8a123a.jpeg

c469b90eeba39982c41651ec817e484a.jpeg

83b777d85a23ec8abcd26823bb7ec78d.jpeg

61606cd1a1d9366279c1001ca3840774.jpeg

4ab8ff2f194225496e54fbe4759825ef.jpeg

c7c1635a1b5814642c7d4362f717fb46.jpeg

2e40994c26dc658cc643efd698ea6ad6.png

77a80930e21106e1f74ff2673321f21e.png

da04775cab13a6e409d1247e1d83942e.png

b1c2514da595ca0f4c61003a1b888623.png

949bc0b99364f9530d7f06ad359b331b.jpeg

92d315811899d9df7445657eb7d6ece0.jpeg

032e03790da73a6c58948ec02c171b1b.jpeg

89ef76ea9e59d16c48b99f52ef7e37fd.jpeg

0affb7f8aa4bb80770790abb0bd30377.png

87969fe3c155a6278a88e64538963ac7.png

0af0e2a9c330e90d852fccbd0c12f5a8.jpeg

0131d0dca08ab3fd5adeeaa1d040e8ab.png

a9854898a95885515e0d8350c41b0d1c.png

44bf7f726052b282d8d5b94e3373600e.jpeg

e303d11b8e7a29a72fda42f8d834ef06.png

5c5c6a9b4c1b934c51afce63806c1cce.png

机器学习

b9f943ecdc060e94fdd91f217076a34d.jpeg

e3e8f648ae493933a9c771b4b35a3328.jpeg

5f55d738878a284587671329d63d1744.png

内容概要:本文由《未来产业新赛道研究报告》整理而成,涵盖了未来产业在全球范围内的发展态势和竞争形势。报告指出,引领型国家通过全方位体制机制创新,在先进制造、人工智能、量子科技、新一代通信等领域建立了全面领先优势。文中引用了麦肯锡和GVR的数据,预测了人工智能和人形机器人等未来产业的巨大经济潜力。报告还详细介绍了国外和国内对未来产业赛道的重点布局,如量子科技、人工智能、先进网络和通信技术、氢能与储能、生物技术等。此外,报告列举了中国重点省市如北京、上海等的具体发展方向,以及知名研究机构对未来产业热点的分析。最后,报告提出了构建我国未来产业重点赛道目录的建议,包括通用人工智能、高级别自动驾驶、商业航天、人形机器人、新型储能、低空经济、清洁氢、算力芯片、细胞与基因治疗和元宇宙等十大重点赛道。 适用人群:对科技趋势和未来产业发展感兴趣的政策制定者、投资者、企业家和研究人员。 使用场景及目标:①帮助政策制定者了解全球未来产业发展动态,为政策制定提供参考;②为企业提供未来产业布局的方向和重点领域;③为投资者提供投资决策依据,识别未来的投资机会;④为研究人员提供未来科技发展趋势的全景图。 其他说明:报告强调了未来产业在全球经济中的重要性,指出了中国在未来产业布局中的战略定位和发展路径。同时,报告呼吁加强国家顶层设计和行业系统谋划,探索建立未来产业技术预见机制,深化央地联动,推动未来产业高质量发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值