Nature Communications | 清华李梢团队突破中西医宏、微观关联推断难题,提出新算法解析病理影像的微观信息...

肿瘤等复杂疾病的发生发展与药物干预是一个涉及宏观表型、微观细胞与生物分子等多层次信息的复杂生物过程。理解疾病宏、微观信息之间的系统关联,是中西医学共同面对的一个根本问题,也是当前人工智能、网络药理学等新兴学科领域关注的一个重要问题。病理影像作为疾病临床诊断与药物治疗的“金标准”,是衔接中西医临床宏观表型与微观生物信息的关键层次。随着生物医学研究进入AI时代,如何建立高精度的AI算法,突破宏、微观跨层次推断难题,系统解码病理影像形态特征与临床表型、微观细胞之间的关联关系,揭示肿瘤等复杂疾病的中西医诊疗规律并发掘新的诊疗标志物、干预靶点,促进疾病精准防治,已成为当前的研究重点和前沿热点。

2025年2月,清华大学北京市中医药交叉研究所所长、欧洲科学与艺术院院士李梢课题组在《自然-通讯》(Nature Communications)发表了题为“Systematic inference of super-resolution cell spatial profiles from histology images”(“系统推断组织病理图像中的超分辨率细胞空间分布谱”)的研究论文,提出了一种基于弱监督学习框架的病理影像-细胞网络关系推断新算法HistoCell,显著提升了病理影像相关细胞信息的预测精度,并首次在单细胞尺度上实现病理影像微观信息空间关联网络的从头推断,应用于发现胃癌等多种肿瘤的诊疗标志物,对于智能解析中西医的系统生物学基础、促进肿瘤精准防治具有重要意义。

8f8a6a7d302d4d368adf8b9515174c06.png

图1. Nature Communications发表病理影像-细胞网络关系推断研究论文 

8a56f106e27933d1e6568512b7caa06f.jpeg

图2.  HistoCell算法示意图

该文首先在中西医宏、微观跨层次推断的方法学上取得重要突破,建立了一种病理影像与细胞信息的层次模块化编码算法,实现了病理影像相关细胞信息及其空间关联网络的精准推断(图3a)。该算法具有预测精度高、训练效率高的显著优势。一方面,该算法通过全面表征病理形态特征与空间拓扑特征,并有效嵌入细胞水平的层次化编码规律,系统解耦了病理影像特征与微观细胞信息之间的复杂关联,显著提升了病理影像相关细胞信息的预测精度。基准实验表明,该算法对肿瘤病理影像相关细胞类型信息的预测精度(平均相关系数)是当前同类最优预测算法POLARIS的3.1倍(图3b);另一方面,由于该算法在病理影像点位(spot)水平进行编码与训练,克服了常规基于全切片病理图像训练算法对于大规模训练数据的依赖,使得在只有单个空间转录组样本作为训练数据的条件下依然能表现优越的预测性能,显著提升了算法的训练效率,为解决目前医学人工智能研究、特别是中医药人工智能研究所面临的“小样本”训练数据难题提供了重要突破口。尤为重要的是,该算法首次实现单细胞尺度上病理微观信息空间关联网络的从头推断,突破了当前病理影像分析受限于先验标签注释的困境,显著地拓展了病理影像相关微观信息的解析范围,提升了该算法在解析疾病诊疗规律方面取得新发现的潜力。

2f7fff5d13e4f135a80ef4244b6aa4d7.jpeg

图3. HistoCell算法框架(a)及其对肿瘤病理影像相关细胞类型信息的预测精度(b) 

进而,该研究将HistoCell算法广泛应用于肿瘤发生预警、预后风险分层以及药物响应预测等多个临床诊疗场景,取得系列重要发现。在肿瘤发生预警方面,通过聚焦本团队前期发现的胃癌“极早期”这一表征胃炎癌转化临界状态的新分期,成功推断出与胃癌极早期细胞相关的影像学特征,在此基础上融合胃癌极早期中西医临床特征,实现了胃癌发生的高精度预警,并在团队自主构建的胃炎癌转化多中心序贯队列中得到验证(图4a);在预后风险分层方面,研究团队通过解析乳腺癌、胰腺癌以及肝癌等肿瘤病理影像相关细胞空间网络的预后关联,发掘出具有生物可解释性且具有多种肿瘤共性预后风险分层价值的影像标志物,得到公共临床数据的验证(图4b);在药物响应预测方面,通过辨识与免疫细胞相关的病理影像特征,发现并验证了肿瘤化疗响应相关的病理影像标志物(图4c)。上述发现表明,HistoCell算法在深入挖掘中西医影像组学数据的临床价值、促进复杂疾病精准防治上具有广阔的应用前景。

8103b9b1719f8b2a4e9b8b1acadd2a89.jpeg

图4. HistoCell在多个临床诊疗场景中的应用:a. 肿瘤发生预警,b. 肿瘤预后风险分层,c. 肿瘤治疗药物响应预测。

李梢课题组长期致力于从“生物网络”这一系统的角度研究肿瘤等复杂疾病发生发展及药物干预机制,通过人工智能、大数据与中西医学交叉,创建“网络靶标”理论与关键技术体系,聚焦“中西医表型-细胞-分子-中西药物”宏、微观关联的系统推断,研制了中西医药分子网络导航系统——UNIQ系统,并在胃癌中西医极早防治、中药创新研发上取得重要应用。本研究作为UNIQ系统在中西医人工智能前沿技术与应用上的新突破,通过将网络关系推断拓展到病理影像层次,为进一步发展网络药理学、系统理解复杂疾病中西医诊疗规律提供了新方法。

清华大学自动化系助理研究员张鹏、博士生高超飞为该文的共同第一作者,李梢教授为通讯作者,研究得到国家自然科学基金专项项目、国家中医药管理局“中医药原理解读计划”专项项目、安徽省中医药科技攻关专项项目、国家重点研发计划青年科学家项目等资助。

论文链接:

https://www.nature.com/articles/s41467-025-57072-6

Zhang P, Gao C, Zhang Z, et al. Systematic inference of super-resolution cell spatial profiles from histology images[J]. Nature Communications, 2025, 16(1): 1838.

高颜值免费 SCI 在线绘图(点击图片直达)

d6431d53360934ad845f4b369440195f.png

最全植物基因组数据库IMP (点击图片直达)

37a220a4fbefbc0c03ad6c471d81e913.png

往期精品(点击图片直达文字对应教程)

ca04e1600d0aed3e6339ac65ef17f71e.jpeg

512479d76b3c6d8d9cc9c8c7ebddf1f5.jpeg

dc76d9aaa277c785f48a0d5f7d3b15ec.jpeg

4c492cadea9f1bb99946cbc2cc502b8c.jpeg

e0db34e729d236bc475627b8b7f9c335.jpeg

0a4285b9b04dd945900a4b71a4673749.jpeg

2d086a4935c054a65b9431a308c59d04.jpeg

e033cdd075acb200a5cc49d50557d77c.jpeg

37916d552ff45ae08b1cec25256f10ad.jpeg

4080fc7ae42a3b5f67aabecd9765ffb7.jpeg

212c4b7a3ce37b07e2c8d6c2918d01e9.jpeg

246c0d6fd58c06192bc165e1cf683561.jpeg

18bed8077f51f20ca5dd3c264acb6695.png

8a302ad382cc570c4d51c9d81a502aad.png

fe114c23e22ffdcd7a2fcd6ca41e6d46.png

2615759420909e147e1960e21ce88ca4.png

db01e984d69275e2f143bb1f913ba8d2.jpeg

f0bc151e9a032c21761f494007924c9c.jpeg

353cc657688a581393bc582c71576aa9.jpeg

4febcf8a6414fe725c89974fad484163.jpeg

d903f62a5481ed4fd31e7bbe9910871f.png

c8826ff868e5b3ea06430359af7b0515.png

e4746906f397c655d3794d3365a494d6.jpeg

1f43a2765348783253135bbd6765e9e7.png

cfb0a50ba1d52edcfd356fe360b20aff.png

f1a8a81975aac7a486acb52b945b3a50.jpeg

44fe6a779ea08ad8243209cbbca6aed4.png

1f7689c97770d6533872c5663d060d14.png

机器学习

8cb63a68ea29dc474dee09a7352efdb2.jpeg

86426ef8d9cc89e15238f447790aaa51.jpeg

2072a1152940b8d27327dc3f92e3f67c.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值