RuntimeError: there are no graph nodes that require computing gradients

问题描述

在计算两个tensor的wassertein distance(记为loss)后,执行

loss.backward()

报错:

RuntimeError: there are no graph nodes that require computing gradients

 

问题原因

loss是中断梯度传播的变量,即:

(Pdb) loss.requires_grad
False

 

解决方法

把计算wassertein距离的最后一行:

loss = Variable(torch.from_numpy(Gs)).float().cuda()改为:

loss = Variable(torch.from_numpy(Gs), requires_grad=True).float().cuda()

 

总结

计算loss并进行反向传播时requires_grad非常重要。例如GAN训练时固定生成器参数不变更新D就是通过.detach()实现的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值