激光三角测量法 原理、优点和不足

本文介绍激光三角测量法的基本原理及应用,包括正入射与斜入射的区别、测量特点及主要误差来源。该方法利用光学反射规律和相似三角形原理进行非接触式测距。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

引言

激光三角测量法的原理

正入射

斜入射

正入射与斜入射的对比

激光三角测量法测距的特点

主要误差来源

激光抖动

被测物体表面颜色

激光光斑检测精度

入射光束的景深限制

参考文献


引言

激光测距是LCT等主动非视距成像的基础,因此熟悉激光测距方法还是很有必要的。激光测距主要包括干涉法、脉冲ToF法和三角测量法。本文参考几篇文献,说明激光三角测量法的原理。

 

激光三角测量法的原理

激光三角测量法的设置与双目立体视觉很像,只是将其中的一个LCD换成了laser。

激光三角测量法是利用光线空间传播过程中的光学反射规律和相似三角形原理,在接收透镜的物空间与像空间构成相似关系,同时利用边角关系计算出待测位移。根据入射激光和待测物体表面法线之间的夹角,可以将激光三角法测量分为正入射和斜入射两种情况:

正入射:入射光线与待测物体表面法线夹角为0;

斜入射:入射光线与待测物体表面法线夹角为α>0.

 

正入射

原理图如下图所示:

 

激光器发射的光束正入射到参考平面M处、测量平面N处,并分别在CCD上的M'和N'处成像,夹角等如图所示。

则根据几何光路,可知:

进而即可求解得到m.

在已知参考平面的情况下,通过m即可完成测距。

 

斜入射

原理图如下图所示:

[注:本图有误,N点需上移,暂未更改,下述三角形相似关系和求解原理不变]

仍有三角形OPN和三角形OP‘N’相似,科得:

\frac{\frac{m}{\cos \alpha} \sin (\alpha+\beta)}{1+\frac{m}{\cos \alpha} \cos (\alpha+\beta)}=\frac{M^{\prime} N^{\prime} \sin \gamma}{l^{\prime}-M^{\prime} N^{\prime} \cos \gamma}

进而求解出m.

 

正入射与斜入射的对比

正入射:

  • 可以看作是斜入射的一个特例;
  • 具有更好的测量精度和测量稳定性;
  • 但对复杂测量场景容易出现不适用的情况。

 

斜入射:

  • 对复杂场景更易应用;
  • 激光倾斜入射会导致物体表面激光光斑增大,且能量分布不均匀,导致光斑中心检测难度加大,降低检测精度;
  • 斜入射的光斑位置会随位移m的改变而改变,难以完成对某固定点的测距。

激光三角测量法测距的特点

  • 非接触式测距,高精度;
  • 大的测量范围,对待测表面要求较低;
  • 结构简单,性价比高;

 

主要误差来源

激光抖动

激光器常常会因为自身或外界原因抖动,尽管抖动角一般只有±1°,但对测量结果影响很大;

被测物体表面颜色

不同颜色的被测物体-->不同的反射和散射特定-->探测器CCD接收到不同的光强-->影响精度。

颜色误差测量结果如下:

激光光斑检测精度

激光光斑检测精度会对角度、l等值都会产生影响,从而影响测量精度。

入射光束的景深限制

一般的高斯光束聚焦为入射光时,会出现光斑尺寸随测量范围变大而离焦、变大的现象,使系统很难满足高分辨率和大测量范围的要求。

 

 

参考文献

[1]孙有春;庞亚军;白振旭;王雨雷;吕志伟; 激光三角测量法应用技术[J]. 激光杂志, : 1–10.

[2]https://wenku.baidu.com/view/1187afeb551810a6f524868e.html

 

==================================================================================================================

原载于 我的博客

如有错误,可联系 rxnlos@126.com

=================================================================================================================

 

 

 

 

 

 

 

 

 

 

 

 

 

 

### 线激光三角测量原理 线激光三角测量技术基于光学几何关系实现距离测量。该方通过投射一条细长的激光束到被测物体表面,在物体上形成亮线,再利用摄像头捕捉这条光带图像并计算其位置变化来确定目标物的空间坐标。 具体来说,光源发出的一维线状光斑照射至待测面后反射进入接收镜头;由于不同高度处对应的入射角有所差异,则会在感光元件CCD/CMOS阵列的不同区域成像。根据已知参数——即发射器与传感器之间的固定间距\(d\)以及两者连线同基座平面间的夹角\(\alpha\),结合实际观测所得角度偏移量\(\theta\),可以构建起一套解析模型用于求解任意一点P离基准的距离Z: \[ Z=\frac{d}{tan(α±θ)} \] 其中正负号取决于所采用的具体方案设计(直射式或斜射式)。上述方程展示了如何依据简单的三角函数关系完成从二维投影数据向三维空间坐标的转换过程[^1]。 对于线结构光而言,整个工作流程可概括如下:由单一线形激光发生装置产生均匀分布的能量条纹覆盖感兴趣区;随后借助高分辨率摄像机记录下变形后的轮廓形态;最后经计算机处理单元执行特征提取、匹配定位等一系列操作最终获得完整的形状描述信息。 ### 应用实例 在线性扫描场景中,此技术能够提供连续且精确的高度剖面图谱,适用于多种自动化生产线环境下的质量监控任务,比如电子元器件封装检验、汽车零部件尺寸精度审查等领域。另外,在机器人导航辅助方面也有着广泛的应用前景,例如帮助AGV小车建立周围地形认知以便规划最优行驶路径等[^3]。 ```python import numpy as np from matplotlib import pyplot as plt def calculate_distance(d, alpha_degrees, theta_degrees): """Calculate distance using the formula derived from laser triangulation.""" alpha_radians = np.radians(alpha_degrees) theta_radians = np.radians(theta_degrees) z = d / (np.tan(alpha_radians + theta_radians)) return z # Example usage of function with hypothetical values. distance_measured = calculate_distance(0.1, 30, 5) print(f"The calculated depth is {distance_measured:.4f} meters.") ```
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值