现代数字信号处理II课程笔记 | Lecute 1: 阵列信号处理 (1)

本文是关于现代数字信号处理II的课程笔记,重点讨论了相控阵和阵列信号处理。内容涵盖了相位补偿的基本原理,阵列处理问题,多信号下的角度估计——Angle FFT,以及超分辨角度估计的基础,包括子空间、信号子空间和噪声子空间的概念。文章还介绍了数据模型(PCA)和信号模型(MIMO),并探讨了数据模型和信号模型的联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Modern Digital Signal Processing (II)

笔记原文链接:https://mp.weixin.qq.com/s/y6ONgpQlPuw2Seoit_JaOg

张颢老师现代数字信号处理II课程笔记
Lecute 1: 阵列信号处理 (1)

本文目录

本文主要内容

  • 相控阵
  • 波束成型
  • 角度FFT
  • 子空间的概念:信号子空间、噪声子空间

课程概述

1和2的差异

  • 1:1980年以前的事情
  • 2:1980年以后的事情
  • 上学期的主要内容:4个概念

    • 概念1:线性 Linear
    • 概念2:正交 Orthogonal
    • 概念3:平稳 Stationary
    • 概念4:高斯 Gaussian
    • 研究的主要模型是线性模型
    • 研究的方法总是正交化
    • 研究的信号总是假设是平稳的
    • 研究的信号的统计特性主要是考虑高斯的
  • 本学期的主要内容

    • 非线性:阵列信号处理 (Array Processing)

      ✅ 兴起于1980-1990s

      🚩 如:MUSIC算法

    • 非正交:稀疏性 (Sparisty)

      ✅ 兴起于2006-2012s (2012年之后:Deep learning)

      🚩 如:LASSO算法

    • 非平稳: 时频分析 (Time-Frequency Analysis)

      ✅ 兴起于1995-2000s

      🚩 如:Wavelet算法

    • 非高斯: 贝叶斯方法 (Bayesian Method)

      ✅ 兴起于2000-2005s

      🚩 如:MCMC算法

    • “非”:意味着要脱离经典的限制,要处理更加广泛的信号问题

Part 1: Array Signal Processing (Non-Linear)

1980s, 思考的问题:

  • Wireless (Communication, Radar, Navigation, Sonar(机械波))
  • 目的:Transmission / Recieve Signal
  • ⇒ \Rightarrow 需要 Antenna
  • 天线形式:

    • 一般都是孔径天线:形状是固定的

    • 固定天线的优点:High Gain (因为事先可以设计天线,使得能量很集中)

    • 固定天线的缺点:没法移动,需要进行反复调整 (需要伺服系统, Servo )

      ✅ 天线座需要转的快、停的稳、指的准,太难了

  • 改进思路:

    • 如何改进天线座的问题?
    • 之前是基于机械的系统
    • 改成Electronic Scanning ⇒ \Rightarrow 如何实现电扫?
    • 相控阵!(Phased Array)
  • 相控阵的特点:

    • 1 Array :意味着Multiple Antenna Elements,有很多个天线的阵元

    • 2 何谓 相控

      ✅ 假如想要接收来自某特定方向( θ = 30 ° \theta = 30° θ=30°),在不机械旋转的时候如何做到?

      ✅ 信号到达各个阵元的时间是有差别的: s ( t ) , s ( t − Δ 1 ) , . . . , , s ( t − Δ n ) s(t), s(t-\Delta_1), ... , , s(t-\Delta_n) s(t),s(tΔ1),...,,s(tΔn)

      ✅ 如何有效地利用起这些信号? ⇒ \Rightarrow 这些信号之间存在时延(Time Difference) ⇒ \Rightarrow 如何进行补偿(Compensation)? ⇒ \Rightarrow 补偿之后,再加到一起即可

      ✅ 所以问题是:如何对这些信号进行补偿?

1.1 相位补偿的基本原理

  • 信号:
    • s ( t ) = A ( t ) e x p ( 2 π f 0 t ) s(t) = A(t)exp(2\pi f_0 t) s(t)=A(t)exp(2πf0t)
    • 其中 A ( t ) A(t) A(t): Baseband 基带
    • e x p ( 2 π f 0 t ) exp(2\pi f_0 t) exp(2πf0t): 载频
  • 信号时延:
    • 同时体现在基带和载频两个部分
    • s ( t − Δ ) = A ( t − Δ ) e x p ( 2 π f 0 ( t − Δ ) ) s(t-\Delta) = A(t-\Delta) exp(2\pi f_0 (t-\Delta)) s(tΔ)=A(tΔ)exp(2πf0(tΔ))
  • Δ \Delta Δ的来源: 波传递的路程差导致的时延
    • Δ = d s i n ( θ ) c \Delta = \frac{dsin(\theta)}{c} Δ=cdsin(θ)
    • ⇒ \Rightarrow e x p ( 2 π f 0 ( t − Δ ) ) = e x p ( 2 π f 0 t ) e x p ( − 2 π f 0 Δ ) exp(2\pi f_0 (t-\Delta)) = exp(2\pi f_0 t)exp(-2 \pi f_0 \Delta) exp(2πf0(tΔ))=exp(2πf0t)exp(2πf0Δ) = e x p ( 2 π f 0 t ) e x p ( − 2 π f 0 d s i n θ c ) exp(2\pi f_0 t) exp(-2\pi f_0 \frac{dsin\theta}{c}) exp(2πf0t)exp(2πf0cdsinθ) = e x p ( 2 π f 0 t ) e x p ( − d λ 0 s i n θ ) exp(2\pi f_0 t) exp(-\frac{d}{\lambda_0}sin\theta) exp(2πf0t)exp(λ0dsinθ)
    • 即: s ( t − Δ ) = A ( t − Δ ) e x p ( 2 π f 0 t ) e x p ( − 2 π s(t-\Delta) = A(t-\Delta)exp(2\pi f_0 t)exp(-2\pi s(tΔ)=A(tΔ)exp(2πf0t)exp(2π d λ 0 s i n θ \frac{d}{\lambda_0}sin\theta λ0dsinθ )
    • 其中: d λ 0 s i n θ \frac{d}{\lambda_0}sin\theta λ0dsinθ空间相位 spatial phase
  • 显然, 空间相位中包含了重要的信息:来波方向 θ \theta θ !
    • spatial phase的来源是因为有多根天线

窄带假设:Narrowband Assumption

  • s ( t − Δ ) = A ( t − Δ ) e x p ( 2 π f 0 t ) e x p ( − 2 π s(t-\Delta) = A(t-\Delta)exp(2\pi f_0 t)exp(-2\pi s(tΔ)=A(tΔ)exp(2πf0t)exp(2π d λ 0 s i n θ \frac{d}{\lambda_0}sin\theta λ0dsinθ ) 可近似为:
    • s ( t − Δ ) = A ( t ) e x p ( 2 π f 0 t ) e x p ( − 2 π s(t-\Delta) = A(t)exp(2\pi f_0 t)exp(-2\pi s(tΔ)=A(t)exp(2πf0t)exp(2π d λ 0 s i n θ \frac{d}{\lambda_0}sin\theta λ0dsinθ )
  • 即窄带假设认为 A ( t ) ≊ A ( t − Δ ) A(t) \approxeq A(t-\Delta) A(t)A(tΔ)
    • 原因: A ( t ) A(t) A(t)的带宽相比于载频而言很小
    • 载频:动辄上G;
    • 基带带宽:往往就几M,几十M, 上百M很特殊

  • 从而有:

    • $s(t-\Delta) = s(t)exp(-2\pi \frac{d}{\lambda_0} sin\theta) $
    • 从而 把时间上的时延 转换为了 相移
    • 因此,只需要对每一个阵元进行相位补偿(乘以相移) e x p ( − j ϕ ) exp(-j\phi) exp(jϕ)
    • 即可实现信号的对齐
    • 这样,就可以对特定角度进行成像
    • 相控阵
    • 通过相位的处理,即可抵消阵元、阵元之间的差异
  • 电扫的含义:

    • 不需要动天线,只要 θ \theta θ,就可以实现扫描 的目的!!
    • 还可以 多波束 ⇒ \Rightarrow 因为电磁能量可以线性叠加
    • 需要移相器,会有一些工程问题
    • 但是完全没有机械动作!而且孔径天线不可能同时处理多个方向

1.2 阵列处理问题

  • 有两个问题

  • 问题1:波束形成(beamforming, Scanning) ,对不同的阵元馈以不同的补偿相位。但是应该馈多少?馈 θ \theta θ的相位的话只能顾及一个方向,如何顾及所有方向?另外还希望抑制旁瓣(增加主瓣)

    • 需要求解一组系数 ω 1 , ω 2 , . . . , ω n \omega_1,\omega_2, ...,\omega_n ω1,ω2,...,ωn ⇒ \Rightarrow 即对这组数进行设计

    • 将这组系数加到各个阵元上: X ( t ) = Σ k = 1 n ω k S k ( t ) X(t) = \Sigma_{k=1}^{n} \omega_k S_k(t) X(t)=Σk=1nωkSk(t)

    • 希望最终的 X ( t ) X(t) X(t)能够满足各种各样的要求

      ✅ 例如:希望能够最小化X的能量: m i n ω E ∣ X ∣ 2 min_\omega E|X|^2 minωEX2, s.t., 在给定方向上能够正常接收: w T g ( θ 0 ) = 1 w^T g(\theta_0) = 1 wTg(θ0)=1 ⇒ \Rightarrow 基于相位补偿,但比相位补偿更高级

  • 问题2:DOA(Direction of Arrival),来波方向估计

    • 为什么不把每个方向都扫一遍?哪个方向大就知道是哪个方向的 ⇒ \Rightarrow 已经用过了,最早的DOA(机械二战,电扫1970s)

    • 对性能有要求

      🚩 分辨率: 2°, 1°, 甚至 <1° ⇒ \Rightarrow 靠转的方法,依赖于幅度,但幅度受噪声影响很大

      🚩 精度 ⇒ \Rightarrow 来波方向的信息全部来自相位 ⇒ \Rightarrow 所以所有基于幅度的方法都不会SOTA, 要使用基于相位的方法

    • 另一个问题:多信号问题(Multiple Signals) (Same Frequency)下的DOA

      ✅ 会产生干涉

      ✅ 处理多信号时,关键在于窄带假设所忽略的基带:利用随机性,在随机意义上的不相关 ⇒ \Rightarrow 它们之间的不相关天然形成了对信号的分离

      ✅ 分离后,再利用相位信息完成DOA

1.3 多信号下的角度估计:Angle FFT

  • 有一组均匀分布的水平天线阵元

    • 阵元间间距为d
    • 均匀线阵(Uniform Linear Array, ULA)
    • 第k个阵元的接收信号: s k ( t ) = x 1 ( k ) ( t ) + x 2 ( k ) ( t ) + . . . + x m ( k ) ( t ) = Σ i = 1 m x m ( k ) ( t ) s_k(t) = x_1^{(k)}(t) + x_2^{(k)}(t) + ... + x_m^{(k)}(t) = \Sigma_{i=1}^{m}x_m^{(k)}(t) sk(t)=x1(k)(t)+x2(k)(t)+...+xm(k)(t)=Σi=1mxm(k)(t)
    • (m: signal sources; n: elements)
    • x i ( k ) ( t ) = A i ( t − Δ i ( k ) ) e x p ( j 2 π f 0 t ) e x p ( − j 2 π f 0 Δ i ( k
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值