简要介绍 | OOD目标检测:背景,研究现状,挑战和未来

本文深入探讨了OOD目标检测的背景、研究现状,包括基于异常检测和生成模型的方法,面临的挑战如训练样本不足、类别不平衡和泛化性能限制,以及未来可能的解决方案,如自监督学习、鲁棒性优化、传递式迁移学习和元学习的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OOD目标检测:背景,研究现状,挑战和未来

1. 引言

在计算机视觉领域,目标检测任务一直是研究的热点。然而,大多数现有的目标检测方法在面对 开放环境中的未知类别(Out-Of-Distribution, OOD)时性能表现不佳。本文将探讨OOD目标检测的背景、研究现状、挑战和未来。

2. 背景

目标检测方法通常在 训练集 上学习,然后在 测试集 上进行评估。然而,现实世界中的环境是开放的,可能包含许多训练集中未出现的类别。这些未知类别被称为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值