计算成像论文速递 | ICCV, 2023, NLOS-NeuS: Non-line-of-sight Neural Implicit Surface

NLOS-NeuS是NeTF的一种扩展,用于非线性视场中的3D表面重建。该方法利用带有符号距离函数的神经隐式表面,在非视距成像场景中重建高精度的三维几何。通过结合体渲染和特定的训练损失,NLOS-NeuS解决了非零水平集的问题,实现了高质量的NLOS成像结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NLOS-NeuS:非线性视场神经隐式表面

本文提出了NLOS-NeuS,这是NeTF的扩展,用于在NLOS场景中表示3D表面隐式函数。

在这里插入图片描述

Project page: https://yfujimura.github.io/nlos-neus/

简介

  • NLOS成像用于从间接光线推断不可见场景。
  • NeTF用于在NLOS场景中表示场景作为神经辐射场。
  • 本文提出NLOS-NeuS,将NeTF扩展为带有符号距离函数(SDF)的神经隐式表面,以在NLOS场景中重建三维表面。
    在这里插入图片描述

相关工作

  • NLOS成像
    • 输入通常为散射墙上的瞬态,输出为关于场景的表示。
    • 目前工作大多使用离散表示如voxel。
    • NeTF使用MLP对密度和反射进行参数化。
  • 神经隐式表面
    • SD
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不再更新,请勿购买!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值