TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

原始笔记链接: https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486779&idx=1&sn=c75171844595150abc48d2dd59e7255f&chksm=cf51bfc2f82636d4e3f9c8526d0f25df1bea5496d9945d1e963961fea8c8fd630e7670b99afb#rd
↑ \uparrow 打开上述链接即可阅读全文

TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

毫米波雷达论文阅读: TRS 2023 | Spurs in Millimeter-Wave FMCW Radar System-on-Chip

图 0

论文链接:https://ieeexplore.ieee.org/document/10097751

0 Abstract

  • 研究内容

    • present a nonlinear system model to evaluate the impact of circuit nonlinearities on spurs in millimeter-wave FMCW radar system-on-chips

    • The developed model includes:

      ✅ Harmonics of the frequency multiplier (频率乘法器的谐波)

      ✅ Nonlinearity of the power amplifier (PA) and low-noise amplifier (LNA) (功率放大器和低噪声放大器的非线性度)

      ✅ Switching operation of the receiver (RX) mixer (接收机混频器的切换操作)

      ✅ Limited bandwidth of the PA, LNA, transmitter (TX) and RX antennas (PA, LNA, 发射接收天线的有效带宽)

      ✅ TX-to-RX leakage (发射接收泄漏)

  • 意义

    • The nonlinear model can be used to derive frequency and amplitude of spurs in the radar IF spectrum
    • without time-consuming simulations
  • Insights : The major insights about the impact of different nonlinearities and their interactions

    • Harmonics of the frequency multiplier appear as spurs in the IF spectrum
    • PA can be driven in its nonlinear region to mitigate the harmonics generated by the frequency multiplier
    • Bandwidth of the TX and RX systems should be limited to attenuate the undesired harmonics(衰减不希望出现的谐波)
    • Interaction between the TX-to-RX leakage signal and the LNA nonlinearity can lead to spurs close to the target echo in the IF spectrum

1 Introduction

  • 背景: Millimeter-wave high-resolution radars的重要性

    • Automotive sensors (ADAS, autonomous driving)
    • Medical imaging, vital signs monitoring, gesture recognition
    • IoT sensors, smart buildings, industrial transport, robotics
  • 背景: mm-wave radar SoC 的最新进展

    • Implemented in CMOS, SOI, SiGe processes
    • Operating at 60 GHz, 77 GHz, 76-81 GHz, 140 GHz, 200-300 GHz
    • Achieving high range resolution by using higher mm-wave bands and wide bandwidth
    • Achieving high angular resolution using MIMO architecture
  • 问题:广泛使用的FMCW雷达系统存在Spurs

    • Signal generation can be challenging due to requirements on:

      ✅ Bandwidth

      ✅ Phase noise

      ✅ Jitter

      ✅ Spurs

    • 前三种已经有解决方案:Nonlinear effects such as chirp nonlinearity can be mitigated using error correction or calibration techniques

    • Spurs: Spurs are undesired signals in the radar IF spectrum that can be generated by

      ❗ Harmonics of the frequency multiplier (因为low harmonic rejection ration(HRR) of the frequency multiplier)

      ❗ Nonlinearities of the power amplifier (PA) and low-noise amplifier (LNA) (通过 affect the harmonics level)

      ❗ TX-to-RX leakage (通过 affect the harmonics level)

    • 结论:一个全面的非线性模型对于推导 对 FMCW雷达电路组件的有效电路和系统设计 的要求 至关重要

  • This paper : presents a nonlinear system model for mm-wave FMCW radars

    • includes several important effects

      harmonics of the frequency multiplier

      nonlinearity of the PA, LNA

      the switching operation of the RX mixer

      the limited bandwidth of the TX and RX

      the stop-band rejections of the TX, RX, and IF filter

      the TX-to-RX leakage

    • To evaluate circuit nonlinearities and their interactions

    • 作用:

      ✅ The developed model can be used to estimate the frequency and amplitude of spurs in the radar IF spectrum

      without the need for time-consuming system and circuit simulations

2 Non-Linear System Model of FMCW Radar

2.1 Principles of FMCW Radar

图 1

  • Architecture of a mm-wave FMCW radar system:

    • Reference chirp signal is generated at lower frequency (e.g. 10 GHz)

    • Then Frequency multiplier transforms it to mm-wave band

      好处 :useful to achieve lower phase noise in the reference signal

    • Multiplier output signal is amplified by PA (功率放大器) and transmitted

    • Echo signal is received, amplified by LNA (低噪声放大器) and mixed with replica of multiplier output

    • Mixer output signal passes through IF bandpass filter (BPF)

  • Reference chirp signal

    • Linear time-dependent frequency:

      f r e f ( t ) = f 0 + S t 0 ≤ t ≤ T c f_{\mathrm{ref}}(t)=f_0+S t \quad 0 \leq t \leq T_c fref(t)=f0+St0tTc

      T c T_c Tc: chirp period

    • Instantaneous phase:

      Φ r e f ( t ) = 2 π ∫ f r e f ( t ) d t = Φ 0 + 2 π f 0 t + π S t 2 \Phi_{\mathrm{ref}}(t)=2 \pi \int f_{\mathrm{ref}}(t) d t=\Phi_0+2 \pi f_0 t+\pi S t^2 Φref(t)=2πfref(t)dt=Φ0+2πf0t+πSt2

  • Frequency multiplier ideally generates

    • Chirp signal with frequency N f r e f ( t ) Nf_{ref}(t) Nfref(t)
    • Bandwidth of N B NB NB
    • Slope of N S NS NS
    • Period of T c T_c Tc
  • Received signal related to transmitted signal

    • x R X ( t ) = G R x T X ( t − τ R ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right) xRX(t)=GRxTX(tτR),
    • GR: attenuation factor – G R = ( G A , T X G A , R X L s y s σ λ 2 ( 4 π ) 3 R 4 ) 1 2 G_R=\left(\frac{G_{\mathrm{A}, \mathrm{TX}} G_{\mathrm{A}, \mathrm{RX}} L_{\mathrm{sys}} \sigma \lambda^2}{(4 \pi)^3 R^4}\right)^{\frac{1}{2}} GR=((4π)3R4GA,TXGA,RXLsysσλ2)21
    • τ R \tau_R τR: time-of-flight – τ R 0 = 2 R 0 c \tau_{R_0}=\frac{2 R_0}{c} τR0=c2R0
  • Mixer + BPF output signal

    • instantaneous phase: Φ I F ( t ) = N Φ r e f ( t ) − N Φ r e f ( t − τ R ( t ) ) \Phi_{\mathrm{IF}}(t)=N \Phi_{\mathrm{ref}}(t)-N \Phi_{\mathrm{ref}}\left(t-\tau_R(t)\right) ΦIF(t)=NΦref(t)NΦref(tτR(t))

    • ⇒ \Rightarrow 大致表示一个正弦信号, frequency:

      f I F = ( N S ) τ R 0 + f D = ( 2 N S c ) R 0 + ( 2 N f 0 c ) v f_{\mathrm{IF}}=(N S) \tau_{R_0}+f_D=\left(\frac{2 N S}{c}\right) R_0+\left(\frac{2 N f_0}{c}\right) v fIF=(NS)τR0+fD=(c2NS)R0+(c2Nf0)v

    • 2D FFT to get Range and Velocity

2.2 FMCW Radar Nonlinear Model

A nonlinear system model which properly captures the circuit nonlinearities and interactions of different nonlinear effects with each other can be very valuable for efficient design of a mm-wave FMCW radar SoC.

在这里插入图片描述

2.2.1 Important nonlinear effects in FMCW radar system model:
  • Output harmonics of frequency multiplier

    • Neglect spurs from reference circuits like PLL or DDS

    • Harmonics level depends on:

      Multiplier circuit structure

      Frequency band

      Chirp bandwidth

      Quality factor of passive components

      IC process features

    • The output of the frequency multiplier

      x o u t , M U L ( t ) = ∑ k = 1 ∞ a k cos ⁡ [ k Φ r e f ( t ) ] x_{\mathrm{out}, \mathrm{MUL}}(t)=\sum_{k=1}^{\infty} a_k \cos \left[k \Phi_{\mathrm{ref}}(t)\right] xout,MUL(t)=k=1akcos[kΦref(t)]

  • Nonlinearity of PA

    • Can change harmonics’ relative amplitude
    • Especially at low supply voltages
  • Bandwidth of PA and TX

    • Bandwidth of PA: how output harmonics of the frequency multiplier reach to the TX antenna

      ✅ 受负载阻抗(用来最大化输出功率/efficiency)的限制

    • Bandwidth of Tx

      ✅ three possible scenarios: 在这里插入图片描述

      ✅ 本文:假设为情况(b)

    • 谐波 k k k的相对衰减系数

      A T X , k = ∣ H T X ( j k ω 0 ) ∣ ∣ H T X ( j N ω 0 ) ∣ A_{\mathrm{TX}, \mathrm{k}}=\frac{\left|H_{\mathrm{TX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{TX}}\left(j N \omega_0\right)\right|} ATX,k=HTX(jNω0)HTX(jkω0),

      ✅ 决定因素:信号分量之间的频率差、PA电路中使用的片上无源元件的质量因子,以及TX天线带宽。

  • TX-to-RX leakage signal

    • 产生原因 :天线之间的耦合 + 芯片基板的耦合

    • 后果 :desensitizes the RX circuits (特别是LNA) ⇒ \Rightarrow 掩盖目标

    • 解决 :目前的leakage cancellation已经可以做到 30~50dB

      ✅ still limits system performance

    • The received signal: x R X ( t ) = G R x T X ( t − τ R ) + G L x T X ( t − τ L ) x_{\mathrm{RX}}(t)=G_R x_{\mathrm{TX}}\left(t-\tau_R\right)+G_L x_{\mathrm{TX}}\left(t-\tau_L\right) xRX(t)=GRxTX(tτR)+GLxTX(tτL),

      ✅ leakage的后果can be different for short and long target ranges

  • Bandwidth of LNA and RX

    • 意义:决定了能够到达混频器的谐波信号

    • LNA bandwidth:

      ✅ modeld by two transfer functions – H in, LNA  ( j ω ) H_{\text {in, LNA }}(j \omega) Hin, LNA () and H out,LNA  ( j ω ) H_{\text {out,LNA }}(j \omega) Hout,LNA ()

      ✅ 分别对应 输入和输出匹配网络的 frequency responses

      ✅ 带宽限制因素: input matching network (负责提供optimum noise matching)

    • RX bandwidth:

      ✅ 仍使用上图(b) (the same as for the TX)

    • The relative attenuation of the harmonic k k k:

      A R X , k = ∣ H R X ( j k ω 0 ) ∣ ∣ H R X ( j N ω 0 ) ∣ A_{\mathrm{RX}, \mathrm{k}}=\frac{\left|H_{\mathrm{RX}}\left(j k \omega_0\right)\right|}{\left|H_{\mathrm{RX}}\left(j N \omega_0\right)\right|} ARX,k=HRX(jNω0)HRX(jkω0).

  • Switching operation of RX mixer

    • Generates intermodulation distortion (互调失真, IMD)
    • Mixes 参考信号和LNA输出中的不同谐波 ⇒ \Rightarrow 在IF上生成spurs
  • Bandwidth and attenuation of IF filter

    • 通带纹波 的影响
    • Fig. 3(a)的情况: distort the chirp signal ⇒ \Rightarrow undesired amplitude and phase modulations
2.2.2 Model Limitations

存在Limitations的原因

  • 模型考虑了 Most important effects for accurate radar performance evaluation
  • Higher order imperfections excluded for clarity
  • Apply approximations to keep model simple yet insightful

Limitations

  • Frequency multiplier

    • Can have large amplitude variations of fundamentals/harmonics across bandwidth
    • 此时,不能用 constant HRR (harmonic rejection ratio) 进行描述
    • 可使用 average/worst-case HRR
  • Largest harmonics of multiplier

    • May not be adjacent harmonics N±1
    • Attenuated by PA, LNA, TX/RX antennas
  • PA/LNA nonlinearity

    • Can significantly change across bandwidth
    • Frequency-dependent P 1 d B P_{1dB} P1dB makes analysis intractable
    • 解决:Use average P1dB for accuracy
    • 接下来的分析会假设 leakage does not saturate LNA
  • Reference signal spurs neglected

    • 本文仅Focus on spurs generated by radar
    • Reference信号中的Spurs: PLL spurs via mechanisms like quantization noise

3 Analysis of FMCW Radar System

利用FMCW雷达的非线性系统模型,研究以下信号的spectral contents:

  • TX输出
  • RX输入
  • IF
3.1 Analysis of Transmitter
  • Frequency multiplier output signal

    • x o u t , M U L ( t ) = a N [ cos ⁡ ( N Φ ) + k r e f cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{out}, \mathrm{MUL}}(t)=a_{\mathrm{N}}\left[\cos (N \Phi)+k_{\mathrm{ref}} \cos [(N \pm 1) \Phi]\right] xout,MUL(t)=aN[cos(NΦ)+krefcos[(N±1)Φ]],
    • Desired harmonic N
    • Two adjacent harmonics N±1
    • k r e f k_{\mathrm{ref}} kref related to HRR of multiplier
  • PA nonlinearity model output signal:

    • 3rd order polynomial: N Φ , 3 N Φ , ( N ± 1 ) Φ , ( N ± 2 ) Φ , ( N ± 3 ) Φ , ( 3 N ± 1 ) Φ , ( 3 N ± 2 ) Φ , ( 3 N ± 3 ) Φ N \Phi, 3 N \Phi,(N \pm 1) \Phi,(N \pm 2) \Phi,(N \pm 3) \Phi,(3 N \pm 1) \Phi,(3 N \pm 2) \Phi ,(3 N \pm 3) \Phi NΦ,3NΦ,(N±1)Φ,(N±2)Φ,(N±3)Φ,(3N±1)Φ,(3N±2)Φ,(3N±3)Φ,
    • Generates spectral regrowth
    • Output spectrum 3 times wider than input
  • TX

    • bandwidth allows N and N±1 harmonics
    • Relative attenuation of N±1: ATX
    • A T X , N ± 1 = A T X A_{\mathrm{TX}, \mathrm{N} \pm 1}=A_{\mathrm{TX}} ATX,N±1=ATX
    • (严格来说,TX system是一个动态非线性系统;本文,简化为一个 frequency-independent nonlinear model followed by a linear band-limited frequency response)
  • TX output signal derived using PA model

    • x T X ( t ) = a T X [ cos ⁡ ( N Φ ) + k T X cos ⁡ [ ( N ± 1 ) Φ ] ] x_{\mathrm{TX}}(t)=a_{\mathrm{TX}}\left[\cos (N \Phi)+k_{\mathrm{TX}} \cos [(N \pm 1) \Phi]\right] xTX(t)=aTX[cos(NΦ)+kTXcos[(N±1)Φ]],
    • 其中: a T X = α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 a_{\mathrm{TX}}=\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3 aTX=α1,PAAin+43(1+6kref2)α3,PAAin3, k T X = ( α 1 , P A A i n + 9 4 ( 1 + k r e f 2 ) α 3 , P A A i n 3 α 1 , P A A i n + 3 4 ( 1 + 6 k r e f 2 ) α 3 , P A A i n 3 ) A T X k r e f k_{\mathrm{TX}}=\left(\frac{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{9}{4}\left(1+k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}{\alpha_{1, \mathrm{PA}} A_{\mathrm{in}}+\frac{3}{4}\left(1+6 k_{\mathrm{ref}}^2\right) \alpha_{3, \mathrm{PA}} A_{\mathrm{in}}^3}\right) A_{\mathrm{TX}} k_{\mathrm{ref}} kTX=(α1,PAAin+43(1+6kref2)α3,PAAin3α1,PAAin+49(1+kref2)α3,PAAin3)ATXkref.
    • Includes fundamental and harmonic components
    • Harmonics level k T X < k r e f k_{TX} < k_{ref} kTX<kref ⇒ \Rightarrow 意味着 TX输出时,谐波水平降低
    • 即:在非线性区域驱动PA,以减轻频率乘法器产生的谐波 + 提高PA效率 是有益的。
  • Key insights:

    • PA nonlinearity decreases harmonics level

      🚩 Beneficial to drive PA in nonlinear region

    • TX bandwidth should limit harmonics

      🚩 Filter can further suppress harmonics

3.2 Analysis of Receiver
  • Received signal :

    • Composed of target echo and TX-RX leakage
  • Without leakage signal :

    • LNA output signal derived using LNA nonlinearity model: x o u t , L N A ( t ) = a o u t , L N A [ cos ⁡ [ N Φ ( t − τ R ) ] + k R X cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & =a_{\mathrm{out}, \mathrm{LNA}}\left[\cos \left[N \Phi\left(t-\tau_R\right)\right]+k_{\mathrm{RX}} \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right]\right],\end{aligned} xout,LNA(t)=aout,LNA[cos[NΦ(tτR)]+kRXcos[(N±1)Φ(tτR)]],

    • IF signal
      x I F ( t ) = a I F [ cos ⁡ [ N Ψ 1 ( t ) ] + k r e f k R X cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] ] x_{\mathrm{IF}}(t)=a_{\mathrm{IF}}\left[\cos \left[N \Psi_1(t)\right]+k_{\mathrm{ref}} k_{\mathrm{RX}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right] xIF(t)=aIF[cos[NΨ1(t)]+krefkRXcos[(N±1)Ψ1(t)]]

      Ψ 1 ( t ) = Φ ( t ) − Φ ( t − τ R ) \Psi_1(t)=\Phi(t)-\Phi\left(t-\tau_R\right) Ψ1(t)=Φ(t)Φ(tτR)

      🚩 结论1:

  • Key insights:

    • 结论1:中频处的激励电平低于参考信号的原始谐波电平 (IF spurs level < reference harmonics level)
      k I F ≈ ( 1 − 3 β P i n , L N A P l d B , L N A 1 − β P i n , L N A P l d B , L N A ) ( 1 − 3 β P i n , P A P l d B , P A 1 − β P i n , P A P l d B , P A ) A R X A T X k r e f 2 k_{\mathrm{IF}} \approx\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{\mathrm{ldB}, \mathrm{LNA}}}}\right)\left(\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ldB}, \mathrm{PA}}}}\right) A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIF(1βPldB,LNAPin,LNA13βPldB,LNAPin,LNA)(1βPldB,PAPin,PA13βPldB,PAPin,PA)ARXATXkref2.

    • 结论2:中频包含了三个频率分量: f I F 1 = N S τ R f_{\mathrm{IF} 1}=N S \tau_R fIF1=NSτR, f I F 2 = ( N + 1 ) S τ R f_{\mathrm{IF} 2}=(N+1) S \tau_R fIF2=(N+1)SτR, f I F 3 = ( N + 2 ) S τ R f_{\mathrm{IF} 3}=(N+2) S \tau_R fIF3=(N+2)SτR

      ✅ Spurs can cause overlap between IF spectra ⇒ \Rightarrow 降低雷达距离分辨率

图 2


  • With leakage signal:

    • 相当于LNA有两个输入 x in,LNA  ( t ) = x echo  ( t ) + x leak  ( t ) x_{\text {in,LNA }}(t)=x_{\text {echo }}(t)+x_{\text {leak }}(t) xin,LNA (t)=xecho (t)+xleak (t),
    • Leakage and LNA nonlinearity interaction generates extra spurs
    • LNA output signal includes spectral components related to leakage: x o u t , L N A ( t ) G R a T X [ C 1 cos ⁡ [ N Φ ( t − τ R ) ] + C 2 cos ⁡ [ ( N ± 1 ) Φ ( t − τ R ) ] + C 3 cos ⁡ [ N Φ ( t − τ L ) ] + C 4 cos ⁡ [ ( N ± 1 ) Φ ( t − τ L ) ] + C 5 cos ⁡ [ 2 N Φ ( t − τ R ) − N Φ ( t − τ L ) ] + C 6 cos ⁡ [ N Φ ( t − τ R ) − 2 N Φ ( t − τ L ) ] ] , \begin{aligned} & x_{\mathrm{out}, \mathrm{LNA}}(t) \\ & \qquad G_R a_{\mathrm{TX}}\left[C_1 \cos \left[N \Phi\left(t-\tau_R\right)\right]\right. \\ & \quad+C_2 \cos \left[(N \pm 1) \Phi\left(t-\tau_R\right)\right] \\ & \quad+C_3 \cos \left[N \Phi\left(t-\tau_L\right)\right]+C_4 \cos \left[(N \pm 1) \Phi\left(t-\tau_L\right)\right] \\ & \quad+C_5 \cos \left[2 N \Phi\left(t-\tau_R\right)-N \Phi\left(t-\tau_L\right)\right] \\ & \left.\quad+C_6 \cos \left[N \Phi\left(t-\tau_R\right)-2 N \Phi\left(t-\tau_L\right)\right]\right],\end{aligned} xout,LNA(t)GRaTX[C1cos[NΦ(tτR)]+C2cos[(N±1)Φ(tτR)]+C3cos[NΦ(tτL)]+C4cos[(N±1)Φ(tτL)]+C5cos[2NΦ(tτR)NΦ(tτL)]+C6cos[NΦ(tτR)2NΦ(tτL)]],
    • IF signal x I F ( t ) ≈ a I F [ C 1 cos ⁡ [ N Ψ 1 ( t ) ] + C 2 k r e f cos ⁡ [ ( N ± 1 ) Ψ 1 ( t ) ] + C 3 cos ⁡ [ N Ψ 2 ( t ) ] + C 4 k r e f cos ⁡ [ ( N ± 1 ) Ψ 2 ( t ) ] + C 5 cos ⁡ [ N Ψ 3 ( t ) ] + C 6 cos ⁡ [ N Ψ 4 ( t ) ] ] \begin{aligned} x_{\mathrm{IF}}(t) \approx & a_{\mathrm{IF}}\left[C_1 \cos \left[N \Psi_1(t)\right]+C_2 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_1(t)\right]\right. \\ & +C_3 \cos \left[N \Psi_2(t)\right]+C_4 k_{\mathrm{ref}} \cos \left[(N \pm 1) \Psi_2(t)\right] \\ & \left.+C_5 \cos \left[N \Psi_3(t)\right]+C_6 \cos \left[N \Psi_4(t)\right]\right]\end{aligned} xIF(t)aIF[C1cos[NΨ1(t)]+C2krefcos[(N±1)Ψ1(t)]+C3cos[NΨ2(t)]+C4krefcos[(N±1)Ψ2(t)]+C5cos[NΨ3(t)]+C6cos[NΨ4(t)]]
  • The Spurs level in the IF:

    • k I F ≈ [ 1 + r 2 − β ( 3 + 2 r 2 ) P i n , L N A P 1   d B , L N A 1 + r 2 − β ( 1 + 2 r 2 ) P i n , L N A P 1   d B , L N A ] [ 1 − 3 β P i n , P A P d d B , P A 1 − β P i n , P A P 1   d B , P A ] × A R X A T X k r e f 2 . \begin{gathered}k_{\mathrm{IF}} \approx\left[\frac{1+r^2-\beta\left(3+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}{1+r^2-\beta\left(1+2 r^2\right) \frac{P_{\mathrm{in}, \mathrm{LNA}}}{P_{1 \mathrm{~dB}, \mathrm{LNA}}}}\right]\left[\frac{1-3 \beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{\mathrm{ddB}, \mathrm{PA}}}}{1-\beta \frac{P_{\mathrm{in}, \mathrm{PA}}}{P_{1 \mathrm{~dB}, \mathrm{PA}}}}\right] \\ \times A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 .\end{gathered} kIF 1+r2β(1+2r2)P1 dB,LNAPin,LNA1+r2β(3+2r2)P1 dB,LNAPin,LNA 1βP1 dB,PAPin,PA13βPddB,PAPin,PA ×ARXATXkref2.

    • 取决于:

      Reference harmonics

      Leakage signal power

      PA/LNA nonlinearity

      TX/RX bandwidth

      IF filter attenuation

    • PA和LNA工作在线性功率范围时 (即 P i n , P A ≪ P 1   d B , P A P_{\mathrm{in}, \mathrm{PA}} \ll P_{1 \mathrm{~dB}, \mathrm{PA}} Pin,PAP1 dB,PA and P i n , L N A ≪ P 1   d B , L N A P_{\mathrm{in}, \mathrm{LNA}} \ll P_{1 \mathrm{~dB}, \mathrm{LNA}} Pin,LNAP1 dB,LNA):

      k I F ≈ A R X A T X k r e f 2 k_{\mathrm{IF}} \approx A_{\mathrm{RX}} A_{\mathrm{TX}} k_{\mathrm{ref}}^2 kIFARXATXkref2.

      🚩 ⇒ \Rightarrow PA和LNA的非线性有利于降低谐波 (因为上式中的前两项总是小于1)

  • Leakage signal

    • Introduces new undesired components

    • 如下图Fig 6所示

    • 该理论能够指导:当给定相对泄露功率时,所需要的IF BPF阻带衰减

      A I F , L / H A_{IF,L/H} AIF,L/H 需使得 k I F , I I < k I F k_{\mathrm{IF}, \mathrm{II}}<k_{\mathrm{IF}} kIF,II<kIF & k I F , I V < k I F k_{\mathrm{IF}, \mathrm{IV}}<k_{\mathrm{IF}} kIF,IV<kIF

在这里插入图片描述

图 3

3.3 Radar Dynamic Range
  • Radar dynamic range (DR) :

    • D R n o i s e DR_{noise} DRnoise : Difference between RX signal power and noise floor

    • D R s p u r DR_{spur} DRspur (DR = D R s p u r DR_{spur} DRspur, 如果spur功率高于噪声功率): Difference between signal power and maximum spur level

  • DR can be maximized by:

    • Limiting largest spur below noise floor

    • D R s p u r = D R n o i s e DR_{spur} = DR_{noise} DRspur=DRnoise

  • D R s p u r DR_{spur} DRspur can be derived as:

    • − 20 log ⁡ 10 ( k I F , max ⁡ ) = P R X , max ⁡ + 174 − N F − 10 log ⁡ 10 ( B n ) -20 \log _{10}\left(k_{\mathrm{IF}, \max }\right)=P_{\mathrm{RX}, \max }+174-N F-10 \log _{10}\left(B_n\right) 20log10(kIF,max)=PRX,max+174NF10log10(Bn),

    • P R X , m a x P_{RX,max} PRX,max: Maximum RX input power

    • N F NF NF: Noise figure

    • B n B_n Bn: Noise bandwidth

    • k I F , max ⁡ k_{\mathrm{IF}, \max } kIF,max: Maximum spur level in IF

  • 上述对DR的限制能够作为约束计算如下参数:

    • Frequency multiplier harmonics

    • TX-RX leakage power

    • PA/LNA nonlinearity

4 Simulations and Discussions

4.1 Simulation Setup
  • 140 GHz chirp signal, 5 GHz bandwidth
  • ×8 frequency multiplier (17.5G reference signal) with -20 dBc harmonics
  • ADS and MATLAB used for TX/RX circuit modeling
  • Target: at 10 m range
4.2 Radar IF Spectrum
  • Compared theory and simulations for various nonlinearities

  • Impact of circuit nonlinearities on radar IF spectrum

在这里插入图片描述

  • Impact of leakage signal:
    • ≤0.5 dB difference up to 0 dB leakage power
    • Discrepancy increases to 2-3 dB at higher leakage
    • Extra spur observed besides two harmonic spurs
    • Amplitude matches theory
    • Location depends on leakage delay

在这里插入图片描述

Developed model provides accurate results

4.3 Radar Range-Doppler Diagram
  • Shows probability of false alarm due to spurs
  • Reduced with PA/LNA nonlinearity
  • Leakage signal spur increases false alarm

在这里插入图片描述

  • Developed theory provides:
    • Guidelines for IF filter attenuation
    • Required harmonic/leakage/nonlinearity levels

5 Conclusion

  • 本文为FMCW毫米波系统的分析提供了一个非线性模型
  • 模型考虑了收发机的多个组件带来的影响
  • 能够预测雷达IF中Spurs的频率和幅度,为电路设计提供参考
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

R.X. NLOS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值