Given a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus sum of all keys greater than the original key in BST.
Example:
Input: The root of a Binary Search Tree like this:
5
/ \
2 13
Output: The root of a Greater Tree like this:
18
/ \
20 13
题解:
这题就是说对每个节点,加上所有比它大的值。
说简单也简单,关键在于二分查找树。
利用二分查找树的特性,我们可以很容易得出从大到小的数组序列,即中序遍历(右子树-根节点-左子树),如例子中给的就是【13,5,2】。
那么就很明显了,一次遍历,加上前面的数,如5变为5+13=18, 2变为2+18=20。
总体复杂度O(n)。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void convert(TreeNode* root, int& sum){
if(root == NULL) return;
convert(root->right, sum);
root->val += sum;
sum = root->val;
convert(root->left, sum);
}
TreeNode* convertBST(TreeNode* root) {
int sum = 0;
convert(root, sum);
return root;
}
};