数据流中的中位数

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。

题解

解法1

使用插入排序维护一个排好序的vector数组,Insert时间复杂度O(n),GetMedian()时间复杂度O(1)

class Solution {
public:
    void Insert(int num)
    {
        haha.push_back(num);
        for(int i = haha.size() - 1; i > 0 && haha[i] < haha[i - 1]; i--)   swap(haha[i], haha[i - 1]);
    }

    double GetMedian()
    { 
        int s = haha.size();
        return s % 2 ? haha[s/2] : (haha[s/2] + haha[s/2-1]) / 2.0;
    }
private:
    vector<int> haha;
};

解法2

维护一个大根堆和小根堆,保证大根堆所有的数小于小根堆中所有的数。Insert时间复杂度O(log(n)),GetMedian()时间复杂度O(1)

所以每次如果num小于大堆顶,插入大堆,否则插入小堆。(第一次插入大堆)
若大堆比小堆个数多1个以上,则从大堆中弹出堆顶元素并插入到小堆中,
若小堆个数少于大堆,则从小堆中弹出堆顶元素并插入大堆中

class Solution {
public:
    void Insert(int num)
    {
        if(maxtop.empty() || num < maxtop.top())    maxtop.push(num);
        else    mintop.push(num);
        if(maxtop.size() == mintop.size() + 2){
            mintop.push(maxtop.top());
            maxtop.pop();
        }
        if(maxtop.size() < mintop.size()){
            maxtop.push(mintop.top());
            mintop.pop();
        }
    }

    double GetMedian()
    { 
        return maxtop.size() == mintop.size() ? (maxtop.top() + mintop.top()) / 2.0 : maxtop.top();
    }
private:
    priority_queue<int, vector<int>, less<int> > maxtop; //大顶堆
    priority_queue<int, vector<int>, greater<int> > mintop; //小顶堆
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值