547. Friend Circles

There are N students in a class. Some of them are friends, while some are not. Their friendship is transitive in nature. For example, if A is a direct friend of B, and B is a direct friend of C, then A is an indirect friend of C. And we defined a friend circle is a group of students who are direct or indirect friends.

Given a N*N matrix M representing the friend relationship between students in the class. If M[i][j] = 1, then the ith and jth students are direct friends with each other, otherwise not. And you have to output the total number of friend circles among all the students.

Example 1:

Input:
[[1,1,0],
[1,1,0],
[0,0,1]]
Output: 2
**Explanation:**The 0th and 1st students are direct friends, so they are in a friend circle.
The 2nd student himself is in a friend circle. So return 2.

Example 2:

Input:
[[1,1,0],
[1,1,1],
[0,1,1]]
Output: 1
**Explanation:**The 0th and 1st students are direct friends, the 1st and 2nd students are direct friends,
so the 0th and 2nd students are indirect friends. All of them are in the same friend circle, so return 1.

Note:
1. N is in range [1,200].
2. M[i][i] = 1 for all students.
3. If M[i][j] = 1, then M[j][i] = 1.

题解

找有几组小朋友,每组或直接或间接认识。

解法1

并查集,开始假设每个人都没有朋友,组的个数为n,之后每次合并减1

public class Solution {
    public int findCircleNum(int[][] M) {
        int n = M.length;
        //建立并查集
        int[] root = new int[n];
        for(int i = 0; i < n; i++){
            root[i] = i;
        }
        int count = n;
        for(int i = 0; i < n; i++){
            for(int j = 0; j < i; j++){
                int ti = i, tj = j;
                if(M[ti][tj] == 1){
                    while(root[ti] != ti)   ti = root[ti];
                    while(root[tj] != tj)   tj = root[tj];
                    if(ti == tj)    continue;
                    //合并
                    root[ti] = tj;
                    count--;
                }
            }
        }
        return count;
    }
}

解法2

DFS

public class Solution {
    public int findCircleNum(int[][] M) {
        boolean[] visited = new boolean[M.length];
        int count = 0;
        for (int i = 0; i < M.length; i++) {
            if (!visited[i]) {
                dfs(M, visited, i);
                count++;
            }
        }
        return count;
    }

    private void dfs(int[][] M, boolean[] visited, int i){
        for (int j = 0; j < M.length; j++) {
            if (M[i][j] == 1 && !visited[j]) {
                visited[j] = true;
                dfs(M, visited, j);
            }
        }        
    } 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值