python 中 and 和 or 运算规律

一、包含一个逻辑运算符

首先从基本的概念着手,python中哪些对象会被当成 False 呢?而哪些又是 True 呢?

在Python中,None、任何数值类型中的0、空字符串“”、空元组()、空列表[]、空字典{}都被当作False,还有自定义类型,如果实现了  __ nonzero __ () 或 __ len __ () 方法且方法返回 0 或False,则其实例也被当作False,其他对象均为True。

下面是最简单的逻辑运算: 这里 1,2 都是Ture; 0,‘’都是False

    1  and  2    ==> 2                1  or  2    ==>  1
    1  and  0    ==> 0                1  or  0    ==>  1
    0  and  1    ==> 0                0  or  1    ==>  1
    0  and  ''   ==> 0                0  or  ''   ==>  ''

总结: 前提一个运算符的情况

  • or 从左到右,返回第一个为真的值,都为假返回后一个值
  • and 从左到右,若所有值均为真,则返回后一个值,有一个假的值,则返回第一个假的值

二、包含两个及以上的逻辑运算符

逻辑运算符 and / or 一旦不止一个,其运算规则的核心思想就是短路逻辑。好的,那我们就来了解一下短路思想:

表达式从左至右运算,若 or 的左侧逻辑值为 True ,则短路 or 后所有的表达式(不管是 and 还是 or),直接输出 or 左侧表达式 。

表达式从左至右运算,若 and 的左侧逻辑值为 False ,则短路其后所有 and 表达式,直到有 or 出现,输出 and 左侧表达式到 or 的左侧,参与接下来的逻辑运算。

若 or 的左侧为 False ,或者 and 的左侧为 True 则不能使用短路逻辑。

就让我们从简单的开始,假设全是 and 语句 或者全是 or 语句:

def a():
    print ('A')
    return []
def b():
    print ('B')
    return 1
def c():
    print ('C')
    return 1
def d():
    print ('D')
    return []
def e():
    print ('E')
    return 1
    
if a() and b() and c() and d() and e():
    print ('ok')

a() 为假 ,其后均为 and 语句,全部短路,最终只返回 a() 的表达式。记住,所有被短路的表达式均不会被输出。所以,此处仅仅打印 A 。

def a():
    print ('A')
    return 1
def b():
    print ('B')
    return 1
def c():
    print ('C')
    return []
def d():
    print ('D')
    return 1
def e():
    print ('E')
    return 1
    
if a() and b() and c() and d() and e():
    print ('ok')

python 从左至右先执行 a() ,a() 返回的逻辑值为 True,后面是 and 语句,所以不能短路其后,继续与 b() 进行逻辑运算,a() and b() 输出 b() 的逻辑值 True,接着与 c() 进行逻辑运算,b() and c() 输出 c() 的逻辑值 False,而其后均为 and 语句, 则全部短路,最终只打印了 A B C 。

def a():
    print ('A')
    return 1
def b():
    print ('B')
    return 1
def c():
    print ('C')
    return []
def d():
    print ('D')
    return 1
def e():
    print ('E')
    return []
    
if a() or b() or c() or d() or e():
    print ('ok')

a() 的逻辑值为 True ,其后均为 or 语句,全部短路,最终只打印了 A,而 if 语句为 True ,所以还要打印一个 ok。

def a():
    print ('A')
    return []
#Python小白学习交流群:711312441    
def b():
    print ('B')
    return []
def c():
    print ('C')
    return 1
def d():
    print ('D')
    return []
def e():
    print ('E')
    return 1
    
if a() or b() or c() or d() or e():
    print ('ok')

python 从左至右先执行 a() ,a() 返回的逻辑值为 False,后面是 or 语句,所以不能短路其后,继续与 b() 进行逻辑运算,a() or b() 输出 b() 的逻辑值 False,接着与 c() 进行逻辑运算,b() or c() 输出 c() 的逻辑值 True,而其后为 or 语句, 则全部短路,最终只打印了 A B C ok。

下面我们就来讲一下 and 与 or 语句同时存在的情况:

def a():
    print ('A')
    return []
def b():
    print ('B')
    return []
def c():
    print ('C')
    return 1
def d():
    print ('D')
    return []
def e():
    print ('E')
    return 1
def f():
    print ('F')
    return 1
def g():
    print ('G')
    return []
def h():
    print ('H')
    return 1

if a() and b() and  c() and d() or e() and f() or g() and h():
    print ('ok')

别以为语句很长就很难,我们好好分析一下,从左至右,首先a() 的逻辑值为 False,其后到 or 语句为止有三个 and 语句: a() and b() and c() and d(),均被短路。只输出 a(), 得到 a() or e() 为True,输出 e() ,得 e() and F() 为 True ,输出 f(), 其后接 or 语句,则短路其后所有。最终只打印了A E F ok 。(结合上面的三点,慢慢分析)

3. 三元运算操作符

在python2.5 之前,python 是没有三元操作符的,Guido Van Rossum 认为它并不能帮助 python 更加简洁,但是那些习惯了 c 、 c++ 和 java 编程的程序员却尝试着用 and 或者 or 来模拟出三元操作符,而这利用的就是python的短路逻辑。

三元运算操作符 bool ? a : b ,若 bool 为真则 a ,否则为 b 。

转化为 python 语言为:

bool and a or b

如何理解呢? 首先 a , b 都为真,这是默认的。如果 bool 为真, 则 bool and a 为真,输出 a ,短路 b 。如果 bool 为假,短路 a,直接 bool or b ,输出 b 。

换一种更简单的写法:

return a if bool else b
<think>嗯,用户现在问的是Python中的all()any()函数。我需要先确认自己对这些函数的理解是否正确。这两个函数都是用于可迭代对象的,all()是当所有元素都为True时返回True,否则False;而any()是只要有一个元素为True就返回True,全为False才返回False。对吗? 然后,用户可能的背景是什么?可能是刚开始学习Python的新手,或者是在编程中遇到了需要判断多个条件的情况,想要了解这两个函数的用法。他们可能不太清楚这两个函数的具体区别应用场景,或者只是需要简单的例子来理解。 接下来,我需要考虑如何组织回答。首先应该分别介绍allany的功能,然后比较它们的区别,再给出一些实际的例子,比如用在条件判断、数据处理等场景。此外,可能还需要注意它们的返回值类型,以及处理空可迭代对象时的行为。比如,all([])返回True,而any([])返回False,这一点可能需要特别说明,避免用户误解。 用户可能还会有更深层次的需求,比如如何高效地使用这两个函数来处理复杂的数据结构,或者在性能上的考虑。比如,对于大型列表,使用生成器表达式会不会更高效?或者这两个函数在遇到第一个False或True时就会短路返回,这样可以节省计算时间。 另外,是否需要提到这两个函数逻辑运算andor的关系?比如,all相当于多个and,any相当于多个or。但allany处理的是可迭代对象中的所有元素,而andor是链式运算,处理多个表达式。 可能还需要举一些实际的应用案例,比如检查列表中所有数字是否大于零,或者是否有至少一个偶数存在。或者结合列表推导式、生成器表达式来使用这两个函数,展示它们的灵活性。 最后,是否需要提醒用户注意参数必须是可迭代对象,否则会报错?比如,如果传入一个非迭代的类型,比如整数,会引发TypeError。这也是常见的错误点。 总结一下,回答的结构应该是:定义每个函数,解释其作用,对比两者的不同,给出示例代码,说明特殊情况(如空迭代对象),以及应用场景注意事项。这样用户就能全面了解这两个函数的用法区别了。</think>在 Python 中,`all()` `any()` 是两个用于**可迭代对象逻辑判断**的内置函数,它们通过简洁的语法实现多元素条件检测。以下是详细解析: --- ### **一、核心功能对比** | 函数 | 行为描述 | 返回值条件 | 空迭代对象返回值 | |---------|----------------------------------|------------------------|------------------| | `all()` | 所有元素为 `True`(或逻辑等价)时返回 `True` | 全真则 `True`,否则 `False` | `True` | | `any()` | 至少一个元素为 `True`(或逻辑等价)时返回 `True` | 有真则 `True`,否则 `False` | `False` | --- ### **二、底层实现逻辑** #### 1. `all()` 的等效代码 ```python def all(iterable): for element in iterable: if not element: # 遇到第一个假值立即短路返回 return False return True ``` #### 2. `any()` 的等效代码 ```python def any(iterable): for element in iterable: if element: # 遇到第一个真值立即短路返回 return True return False ``` --- ### **三、真值判断规则** Python 的布尔上下文使用以下规则: - **视为 `False` 的值**:`0`, `None`, 空容器(`[]`, `{}`, `()`等), `False` - **视为 `True` 的值**:非零数字、非空容器、`True` --- ### **四、典型应用场景** #### 1. 数据验证 ```python # 检查所有数字为正数 numbers = [5, 3.14, 2] print(all(x > 0 for x in numbers)) # 输出: True # 检查至少存在偶数 numbers = [1, 3, 5, 8] print(any(x % 2 == 0 for x in numbers)) # 输出: True ``` #### 2. 文件处理 ```python # 检查所有行长度不超过80字符 with open("data.txt") as f: lines = f.readlines() if all(len(line) <= 80 for line in lines): print("文件符合规范") ``` #### 3. 多条件过滤 ```python # 筛选满足多个条件的对象 users = [ {"name": "Alice", "active": True, "score": 95}, {"name": "Bob", "active": False, "score": 88} ] qualified = [ user for user in users if all([user["active"], user["score"] >= 90]) ] # 结果: [{'name': 'Alice', ...}] ``` --- ### **五、高级用法** #### 1. 结合生成器表达式优化内存 ```python # 不预先生成完整列表,适用于大数据集 large_data = (x for x in range(10**6)) # 生成器表达式 if any(x > 999999 for x in large_data): print("存在超过阈值的值") ``` #### 2. 多维数据结构检查 ```python matrix = [ [1, 2, 3], [4, 5, 6], [7, 8, 9] ] # 检查每行都有偶数 print(all(any(num % 2 == 0 for num in row) for row in matrix)) # 输出: True ``` #### 3. 自定义对象支持 ```python class Sensor: def __init__(self, value): self.value = value def __bool__(self): # 定义真值判断逻辑 return 20 <= self.value <= 30 sensors = [Sensor(25), Sensor(18), Sensor(28)] print(any(sensors)) # 输出: True(Sensor(25)Sensor(28)为True) print(all(sensors)) # 输出: False(Sensor(18)为False) ``` --- ### **六、性能特征** | 特征 | `all()` | `any()` | |---------------------|------------------------|------------------------| | 时间复杂度 | O(n)(最坏情况) | O(1)(最佳情况) | | 短路评估 | 第一个`False`元素终止 | 第一个`True`元素终止 | | 内存消耗 | O(1) | O(1) | --- ### **七、常见误区** 1. **空迭代对象陷阱**: ```python all([]) # True → 因为没有元素为False any([]) # False → 因为没有元素为True ``` 2. **非布尔返回值**: ```python values = [0, False, ""] print(any(values)) # False(所有元素均为假) ``` 3. **惰性求值影响**: ```python # 生成器表达式会改变状态 gen = (x for x in [1, 0, 2]) print(any(gen)) # True(在检查1时返回) print(list(gen)) # 输出: [0, 2](生成器已部分消耗) ``` --- ### **八、与其他逻辑操作的对比** | 操作 | 等效表达式 | 区别 | |--------------------|------------------------------|---------------------------| | `all([a, b, c])` | `a and b and c` | 接受可迭代对象,支持动态数量参数 | | `any([a, b, c])` | `a or b or c` | 同上 | | `not any(...)` | `all(not x for x in ...)` | De Morgan 定律的应用 | 是否需要进一步了解如何结合 `map()` 或 `filter()` 使用这两个函数?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值