C++每日练题(9)

目录

合法括号序列判断

Fibonacci数列


合法括号序列判断

来源:牛客网

链接:合法括号序列判断_牛客题霸_牛客网 (nowcoder.com)

描述

给定一个字符串A和其长度n,请返回一个bool值代表它是否为一个合法的括号串(只能由括号组成)。

测试样例

"(()())",6
返回:true

测试样例:

"()a()()",7
返回:false

测试样例:

"()(()()",7
返回:false

题解 

用栈结构实现,栈中存放左括号,当遇到右括号之后,检查栈中是否有左括号,如果有则出栈,如果没有,则说明不匹配。

代码

class Parenthesis {
public:
    bool chkParenthesis(string A, int n) {
        // write code here
        stack<char> s;
        for(auto& e : A){
            switch(e){
                case '(':
                    s.push(e);
                    break;
                case ')':
                     if(s.empty()){
                         return false;//多出右半边
                     }
                     s.pop();
                     break;
                default:
                    return false;//其他字符
            }
        }
        return s.empty();//多出左半边
    }
};

Fibonacci数列

来源:牛客网

链接:Fibonacci数列_牛客题霸_牛客网 (nowcoder.com)

描述

Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。

输入描述:

输入为一个正整数N(1 ≤ N ≤ 1,000,000)

输出描述:

输出一个最小的步数变为Fibonacci数"

示例1

输入:

15

输出:

2

 题解

本题是对于Fibonacci数列的一个考察,Fibonacci数列的性质是第一项和第二项都为1,后面的项形成递归: F(n) = F(n - 1) + F(n - 2)。
本题可以通过先找到距离N最近的两个Fibonacci数,这两个数分别取自距离N的最近的左边一个数L和右边一个数R,然后通过min(N - L, R - N)找到最小步数

代码 

#include <iostream>
#include <algorithm>
using namespace std;
int main(){
    int f, f1 = 0, f2 = 1;
    int N, left = 0, right = 0;
    cin >> N;
    while(1){
        //fib数列
        f = f1 + f2;
        f1 = f2;
        f2 = f;
        if(f < N){
            left = f;//左边的fib值
        }else{
            right = f;//右边的fib值
            break;
        }
    }
    cout << min(N - left, right - N) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值