目录
合法括号序列判断
来源:牛客网
链接:合法括号序列判断_牛客题霸_牛客网 (nowcoder.com)
描述
给定一个字符串A和其长度n,请返回一个bool值代表它是否为一个合法的括号串(只能由括号组成)。
测试样例:
"(()())",6返回:true
测试样例:
"()a()()",7返回:false
测试样例:
"()(()()",7返回:false
题解
用栈结构实现,栈中存放左括号,当遇到右括号之后,检查栈中是否有左括号,如果有则出栈,如果没有,则说明不匹配。
代码
class Parenthesis {
public:
bool chkParenthesis(string A, int n) {
// write code here
stack<char> s;
for(auto& e : A){
switch(e){
case '(':
s.push(e);
break;
case ')':
if(s.empty()){
return false;//多出右半边
}
s.pop();
break;
default:
return false;//其他字符
}
}
return s.empty();//多出左半边
}
};
Fibonacci数列
来源:牛客网
链接:Fibonacci数列_牛客题霸_牛客网 (nowcoder.com)
描述
Fibonacci数列是这样定义的:
F[0] = 0
F[1] = 1
for each i ≥ 2: F[i] = F[i-1] + F[i-2]
因此,Fibonacci数列就形如:0, 1, 1, 2, 3, 5, 8, 13, ...,在Fibonacci数列中的数我们称为Fibonacci数。给你一个N,你想让其变为一个Fibonacci数,每一步你可以把当前数字X变为X-1或者X+1,现在给你一个数N求最少需要多少步可以变为Fibonacci数。
输入描述:
输入为一个正整数N(1 ≤ N ≤ 1,000,000)
输出描述:
输出一个最小的步数变为Fibonacci数"
示例1
输入:
15输出:
2
题解
本题是对于Fibonacci数列的一个考察,Fibonacci数列的性质是第一项和第二项都为1,后面的项形成递归:
F(n) = F(n - 1) + F(n - 2)。
本题可以通过先找到距离N最近的两个Fibonacci数,这两个数分别取自距离N的最近的左边一个数L和右边一个数R,然后通过min(N - L, R - N)找到最小步数
代码
#include <iostream>
#include <algorithm>
using namespace std;
int main(){
int f, f1 = 0, f2 = 1;
int N, left = 0, right = 0;
cin >> N;
while(1){
//fib数列
f = f1 + f2;
f1 = f2;
f2 = f;
if(f < N){
left = f;//左边的fib值
}else{
right = f;//右边的fib值
break;
}
}
cout << min(N - left, right - N) << endl;
return 0;
}