例8.4迷宫问题 如图所示,给出一个n*m的迷宫图和一个入口、一个出口 编写一个程序,打印从一条从迷宫入口到出口的路径。这里黑色方块的单元表示走不通(用-1表示),白色表示可以走(用0表示) 只能往上、下、左、右四个方向走。如果无路则输出“no way" 算法分析: 只要输出一条路径即可,所以是一个经典的回溯算法问题 和之前的最少步数很类似,都是通过判断四个方向是否可走, 不过不同的是这一题是被动选择下一步,而之前的题目是主动选择然后筛选
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
int u[5]={0,0,1,0,-1};
int w[5]={0,1,0,-1,0};
//desx和desy组成出口的坐标
//soux和souy组成入口的坐标
//head和tail分别为存储队列的首尾
int n,m,desx,desy,soux,souy,head,tail,x,y;
//a,b数组分别用于存放x,y移动的坐标
//map数组用于存放初始时的 数据,即未开始之前的每个点的值
//pre数组用于记录父节点,便于打印路径
int a[51],b[51],pre[51],mmap[51][51];
bool f;
void print(int d){
if(pre[d]!=0){
print(pre[d]);//递归输出路径
}
cout<<a[d]<<","<<b[d]<<endl;
}
//主函数
int main(){
//初始化数据
int i,j;
//读入迷宫的行数n和列数m
cin>>n>>m;
//读入迷宫,0表示通,-1表示不通
for(i=1;i<=n;i++){
for (j =1; j <= m; ++j) {
cin>>mmap[i][j];
}
}
//读入入口的坐标
cin>>soux>>souy;
//读入入口的坐标
cin>>desx>>desy;
//初始化队列的首尾
head=0;
tail=1;
f=0;
mmap[soux][souy]=-1;
a[tail]=soux;
b[tail]=souy;
pre[tail]=0;
//处理数据
//队列不为空的情况下
while(head!=tail){
//队首向后移动一位
head++;
//总共是四个方向,寻找下一步的可行坐标,即通过加减进行左右移动
for (i = 1; i <=4 ; ++i) {
x=a[head]+u[i];
y=b[head]+w[i];
//判断上一步得出的x,y坐标是否可以进行
//即先判断坐标是否在迷宫内,然后判断是否可行
if((x>0)&&(x<=n)&&(y>0)&&(y<=m)&&(mmap[x][y]==0)){
//下一步可行,将得到的坐标追加到队尾
tail++;
a[tail]=x;
b[tail]=y;
pre[tail]=head;
//走过的位置做个标记
mmap[x][y]=-1;
//判断扩展出的节点是否为目标节点
if((x==desx)&&(y==desy)){
f=1;
print(tail);
break;
}
}
}
//找到目标节点
if(f){
break;
}
}
//如果遍历完所有没有找到出口,则失败
if(!f){
cout<<"no way."<<endl;
return 0;
}
}
总结:
1.这一题要输出走迷宫的路径,所以要比之前的题目多设置一个pre数组,用于记录走过的点
2.在使用递归方法打印的时候,注意将cout语句放在if语句外面,因为初始化数据的时候pre[tail]=0,
所以如果放在里面会漏掉迷宫入口的坐标
3.广度优先搜索算法大致可以概括成三个步骤:
(1)确定下一步应该怎样走,也就是计算下一步的坐标
(2)判断得出的坐标是否满足条件,也就是判断是否越界和可行
(3)移动位置的同时更新队列中的坐标,也就是将移动的坐标保存在一个队列中