279. Perfect Squares 完全平方数

题目 - LeetCode 279:完全平方数(Perfect Squares)

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。

详解

我们可以使用 动态规划(DP) 来解决这个问题。

什么是完全平方数?

完全平方数是形如 1, 4, 9, 16, 25... 的数,即某个整数的平方。


✅ 状态定义

dp[i] 表示“和为 i 的最少完全平方数的数量”。


🔁 状态转移方程

dp[i] = min(dp[i - j*j] + 1)  // 对于所有 j*j <= i
❓ 为什么这样写?

我们试图把 i 拆成一个较小的数 i - j*j 加上一个平方数 j*j
如果我们已经知道 dp[i - j*j],那么 dp[i] 最多只需要 dp[i - j*j] + 1 个数字。

我们尝试所有可能的平方数 j*j ≤ i,找出最小的组合。


💻 Swift 实现代码

func numSquares(_ n: Int) -> Int {
    var dp = [Int](repeating: Int.max, count: n + 1)
    dp[0] = 0
    
    for i in 1...n {
        var j = 1
        while j * j <= i {
            dp[i] = min(dp[i], dp[i - j * j] + 1)
            j += 1
        }
    }
    
    return dp[n]
}

🧮 示例

numSquares(12) // 输出 3 => 4 + 4 + 4
numSquares(13) // 输出 2 => 4 + 9

📊 时间复杂度分析

  • 外层循环执行 n
  • 内层循环最多执行 √n

总复杂度:O(n√n)
空间复杂度:O(n)


### C语言实现完全平方数的示例代码 以下是基于给定引用内容以及专业知识设计的一个完整的C语言程序,用于判断一个正整数是否为完全平方数。 ```c #include <stdio.h> #include <math.h> // 函数声明:判断是否为完全平方数 int isPerfectSquare(int num); int main() { int number; // 提示用户输入一个正整数 printf("请输入一个正整数: "); scanf("%d", &number); if (isPerfectSquare(number)) { printf("%d 是完全平方数。\n", number); } else { printf("%d 不是完全平方数。\n", number); } return 0; } // 判断是否为完全平方数的函数定义 int isPerfectSquare(int num) { if (num < 0) return 0; // 负数不可能是完全平方数 double sqrtValue = sqrt(num); // 计算平方根[^1] if ((sqrtValue - floor(sqrtValue)) == 0) { // 如果平方根是一个整数,则返回true return 1; } return 0; } ``` 上述代码通过 `sqrt` 函数计算输入数值的平方根,并利用 `floor` 函数验证其是否为整数。如果两者相减的结果等于零,则说明该数是完全平方数。 --- ### LeetCode 题目扩展——最小完全平方数组合 对于更复杂的场景,可以参考 LeetCode 上的经典题目 **279. Perfect Squares**,它要求找到组成目标数所需的最少完全平方数的数量。以下是一个简化版的动态规划解决方案: ```c #include <stdio.h> #include <stdlib.h> // 动态规划求解最少完全平方数数量 int numSquares(int n) { int *dp = (int *)malloc((n + 1) * sizeof(int)); dp[0] = 0; for (int i = 1; i <= n; ++i) { dp[i] = i; // 初始化最大可能值 for (int j = 1; j * j <= i; ++j) { dp[i] = (dp[i] < dp[i - j * j] + 1) ? dp[i] : dp[i - j * j] + 1; } } int result = dp[n]; free(dp); return result; } int main() { int targetNumber; printf("请输入一个正整数: "); scanf("%d", &targetNumber); printf("构成 %d 所需的最少完全平方数数量为:%d\n", targetNumber, numSquares(targetNumber)); return 0; } ``` 此代码实现了动态规划算法,能够高效解决复杂情况下的完全平方数组合问题[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

依旧风轻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值