mxnet手写数字识别(2)

还可以写得简便一些的,是这个版本import os, sys from utils import get_data import mxnet as mx import numpy as np import logging # 创建计算图 data = mx.symbol.Variable('d...

2018-05-22 13:32:56

阅读数 63

评论数 0

mxnet 手写数字识别的例子

前面写了一些关于mxnetAPI的,现在给出一个github上mxnet的一个例子import os, sys from utils import get_data import mxnet as mx import numpy as np import logging # 创建计算图 dat...

2018-05-22 13:29:42

阅读数 119

评论数 0

Mxnet Data Loading API

import mxnet as mx nd_iterator = mx.io.NDArrayIter(data={'data': mx.nd.ones((100, 10))}, label={'softmax_label': mx.n...

2018-05-22 13:23:40

阅读数 103

评论数 0

Mxnet Module API

Module API, 定义在module包里面, 提供了一个中间和高-level的接口, 对于用符号运算。可以把module想像成为一个能够执行由symbol来定义的一个程序。比如 mod = mx.mod.Module(out), 这个out是前面的symbol计算的最终,可以理解为神经网络出...

2018-05-22 12:22:05

阅读数 320

评论数 0

class mx.metric.EvalMetric的子类

源代码中在介绍了mx.metric.EvalMetric这个类之后 ,后面还写了几个子类比如 Accuracy    ‘acc’TopKAccuracy       'top_k_acc'F1MAE ----mean absolute error lossMSE  -- mean squared ...

2018-05-21 20:25:16

阅读数 47

评论数 0

Mxnet中Metric API中的Evaluation Metric API

1. mxnet.metric.check_lable_shapes(labels, preds, wrap=False, shape=False)labels: data's labels, ndarraypreds:  predicted values, ndarraywrap : boole...

2018-05-21 20:19:01

阅读数 322

评论数 0

mx.metric.create()的用法

mx.metric.create()是模型评价的一个选择API中的是这样的:def create(metric, *args, **kwargs): """Creates evaluation metric from metric nam...

2018-05-21 19:31:46

阅读数 270

评论数 0

mxnet 中Symbol API 总结《2》

上次说到一些基本的Symbol的运算和在神经网络中常用的activation 和 softmax。这两个的作用是根据已知的一些变量的类型来推断出变量和输出的类型。Symbol.bind比如刚才见到的:a = mx.sym.Variable('a')b = mx.sym.Variable('b')c...

2018-05-21 16:27:11

阅读数 165

评论数 0

mxnet中Symbol API 总结《-》

Symbol API 这个包主要是用于提供神经网络的图和自动求导, 一个symbol代表具有多个输出的符号表达,它们是经过运算符和神经网络层的复合,或者矩阵运算。一个运算能取多个输入变量,产生不只一个输出变量,并且还有内部的静态变量,一个变量或者是作为另一个symbol的输出,或者是后面bind ...

2018-05-21 16:13:26

阅读数 966

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭